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ABSTRACT Artificial intelligence (AI) image translation has been a valuable tool for processing image data in biological and
medical research. To apply such a tool in mission-critical applications, including drug screening, toxicity study, and clinical
diagnostics, it is essential to ensure that the AI prediction is trustworthy. Here, we demonstrate that an ensemble learning
method can quantify the uncertainty of AI image translation. We tested the uncertainty evaluation using experimentally ac-
quired images of mesenchymal stromal cells. We find that the ensemble method reports a prediction standard deviation
that correlates with the prediction error, estimating the prediction uncertainty. We show that this uncertainty is in agreement
with the prediction error and Pearson correlation coefficient. We further show that the ensemble method can detect out-of-
distribution input images by reporting increased uncertainty. Altogether, these results suggest that the ensemble-estimated
uncertainty can be a useful indicator for identifying erroneous AI image translations.
WHY IT MATTERS Light microscopy has been an essential tool for life sciences and biophysics research. Although
many deep-learning models have been introduced to enhance and analyze the microscopy data, these methods have
remained underutilized due to the unknown accuracy of AI predictions in practical imaging processing applications. In
this work, we demonstrate that a simple ensemble approach that evaluates the standard deviation of independent AI
predictions can effectively forecast the prediction accuracy of microscopy data labeling. Using experimental data of
mesenchymal stromal cells, we further show that the ensemble method can identify AI prediction errors due to common
imaging variations.
INTRODUCTION

Deep learning has demonstrated remarkable promise
in enhancing and interpreting biological and medical
data that are overwhelmingly complex for traditional
parametric approaches (1). Specifically, artificial intel-
ligence (AI) image translation has proved capable of
labeling and enhancing image data, in which the
deep neural networks (DNNs) decipher the high-
dimensional and nonlinear relationship between the
target and input images. Such a powerful approach
has enabled various in silico analyses of microscopy
data, including identification of different cell types in
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co-culture samples (2), noninvasive labeling of organ-
elles (3), virtual histological staining (4), image resolu-
tion enhancement (5), AI-aided medical diagnosis (6),
label-free cell sorting (7), and in situ phenotyping of
live cells (8,9). These innovative experimental capabil-
ities have paved avenues to addressing interesting
open questions in life sciences and biophysical
research.

Despite such innovation (2–8,10–19), AI image
translation has not been routinely integrated in
biology experiments, clinical use, or pharmaceutical
applications. A major reason that causes this lack of
traction is the unknown accuracy of AI predictions
when the ground truth is absent. DNN models are
black-box functions with multiple layers of nonlinear-
ities (20), which make the evaluation of prediction con-
fidence challenging (21–23). In the biomedical field, it
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is particularly important to ensure the accuracy of AI
predictions, as any error could lead to catastrophic
misinterpretation such as disease misdiagnosis or
false results of drug toxicity or efficacy (24). The
inability to know when to trust and when not to
trust the AI prediction fundamentally hinders these
mission-critical applications of DNNs (25,26).

To address this challenge, various uncertainty esti-
mation methods have been developed in the past
decade, mainly for evaluating image classification
tasks (27–32); a few of the most popular methods
include stochastic gradient Langevin dynamics
(SGLD) (33,34), Monte-Carlo dropout (35), stochastic
variational inference (SVI) (36,37), and ensemble
(e.g., naive, Snapshot (38), and BatchEnsemble (39)).
Specifically, the ensemble methods have been devel-
oped to report the AI prediction uncertainty by
analyzing the prediction distribution of individually
trained models. Compared to other popular algo-
rithms, these ensemble-based methods are simple to
implement, versatile, and have been shown to perform
as well as the Bayesian methods (40–43).

In this work, we adapted the ensemble method to
quantify the uncertainty of AI image-to-image transla-
tion. To do this, we developed a workflow that con-
verts the standard deviation (Std) of AI predictions
into uncertainty. Using actual microscopy data of
mesenchymal stromal cells (MSCs), we showed that
our ensemble method can effectively capture the
AI translation accuracy across multiple molecular
markers. More importantly, our method can detect
mispredictions that arise from sample mishandling,
imaging condition variation, and subtle cellular pheno-
typic changes, suggesting that the ensemble-based
uncertainty evaluation can detect unexpected input
(called out-of-distribution (OOD) data). In addition,
we developed a FastEnsemble training framework
that builds upon the recent findings of the local mini-
mum connectivity in DNNs (44). This training strategy
allows us to generate multiple independent ensemble
models with a small computational overhead. Experi-
mental results demonstrate that this training frame-
work significantly accelerates the running time
without compromising the quality of uncertainty
estimation.
MATERIALS AND METHODS

Microscopy image acquisition

Throughout this work, we used experimental microscopy data for
testing the uncertainty evaluation method. By imposing tractable
perturbations to these microscopy images, we studied how our un-
certainty assessment identified AI misprediction.

This workmainly testedmicroscopy images of MSCs and prostate
cancer cells. Specifically, human bone marrow-derived MSCs (ATCC,
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PCS-500-012) were cultured according to the manufacturer's in-
struction and standard protocols (45,46). In brief, once the MSCs
were thawed, they were seeded into tissue culture flasks at a density
of 5000 cells/cm2 with the culture medium comprising DMEM
(Gibco, 1 g/mL glucose, 500 mL), 10% fetal bovine serum (Gibco),
and 1% penicillin/streptomycin (Gibco). The MSC culture medium
was replaced every 48 h. Similarly to the MSCs, we cultured
androgen-sensitive human prostate adenocarcinoma cells (Lymph
Node Carcinoma of the Prostate (LNCaP)). LNCaPs were seeded at
a density of 10,000 cells/cm2 and cultured according to ATCC
CRL-1740 protocols with medium comprising Gibco RPMI 1640,
10% fetal bovine serum (Gibco), and 1% penicillin/streptomycin
(Gibco).

For immunofluorescence, the cells were first washed with
PBSþ/þ; 4% paraformaldehyde (Thermo Fisher Scientific, 28908)
in 1� PBSþ/þ (Gibco) was subsequently used as the fixative. After
�10 min of incubation, the samples were washed with PBSþ/þ. To
immunostain the sample, the cells were first blocked using a solu-
tion consisting of 2% donkey serum (Sigma-Aldrich, D9663-10ML)
and 0.5% Triton X-100 (Sigma-Aldrich, T8787-50ML) for 30 min.
Each sample was then washed with PBSþ/þ twice, and then incu-
bated with the primary staining solution (0.5% BSA, 0.25% Triton
X-100, and the primary antibody). The slides were left in the stain-
ing solution for 30 min and then washed twice with 1� PBS. After
washing, the secondary staining solution (including drops of
NucBlue and the secondary antibody (MSC) or BODIPY (LNCaP))
was added for 30 min. Last, the samples were washed twice with
PBSþ/þ and added to 0.1% Tween 20 (Sigma-Aldrich, P9416-
50ML) for long-term storage at 4+C. In addition, a fully prepared
and pre-stained mouse kidney section slide was purchased from In-
vitrogen (F24630).

All samples were imaged using both phase-contrast and fluores-
cent microscopy (Etaluma LS720, Lumaview 720/600-Series soft-
ware) with a 20� phase-contrast objective (Olympus, LCACHN
20XIPC).
AI model training image datasets

All AI training datasets consist of paired phase-contrast and fluores-
cence images of either MSCs, LNCaPs, or kidney tissue section. The
image data tested in this work can be mainly categorized into three
groups: 1) baseline images that are the raw microscopy data, 2) per-
turbed images with artifacts that were introduced in a tractable
fashion, and 3) OOD images with gradual distribution shifts.

The baseline training images contain pairs of phase-contrast and
the corresponding immunofluorescence (IF) images of MSCs. The
cells were immunofluorescently stained for a series of surface
markers (i.e., CD105, CD29, CD44, CD90, and STRO-1) that are
routinely used to define MSC characteristics (47). After image acqui-
sition, quality control was performed where blurry or artifact-contain-
ing images were excluded.

To understand if our uncertainty evaluation can be applied in prac-
tical cell imaging tasks, we perturbed the baseline training images
using Fiji ImageJ (48). We studied the following image perturba-
tions: image impurities, overexposure, nonuniform illumination,
and zoomed-in images, which mimicked the effect of using different
or compromised microscope settings. Additionally, we investigated
the effect of cell type mismatch. These OOD datasets were then
used for testing the uncertainty assessment. The training and
testing set parameters for each dataset are summarized in Table 1.

To further analyze the performance of our uncertainty assess-
ment, we obtained two sets of training images that have gradual dis-
tribution shifts. The first dataset includes images of LNCaP cells
that are treated with enzalutamide (Enza) (Selleck Chemicals
S1250) for 48 h. Using the untreated sample (control), we trained



TABLE 1 Train and test set parameters for image datasets

Dataset Training set # Testing set #

MSC-CD105 616 56
MSC-CD29 279 71
MSC-CD44 337 53
MSC-CD900 616 56
MSC-STRO1 367 58
Image impurities (CD105) MSC-CD105 488
Overexposure (CD105) MSC-CD105 15
Nonuniform illumination

(CD105)
MSC-CD105 15

Zoom-In/compromised
microscopy (CD105)

MSC-CD105 15

Cell type mismatch
(CD105, LNCaP)

MSC-CD105 15

Drug-altered phenotype (control) 413 92
Drug-altered phenotype (Enza) control 96
LNCaP cell density (VSparse) 527 41
LNCaP cell density (Sparse) VSparse 181
LNCaP cell density (Dense) VSparse 275
LNCaP cell density (VDense) VSparse 180
Mouse kidney section (Actin) 300 99

The test set was held separate from the train set for allmodel testing.
All OOD datasets were trained using the MSC-CD105 training set and
tested using a separate test set with the corresponding OOD pertur-
bation. For drug-altered phenotype tests, themodelwas trainedusing
the control condition and tested on either the control or Enza test set.
To measure model accuracy on cellular distribution shifts, all LNCaP
density datasets were trained on the VSparse training set and tested
on the corresponding density test set.
an AI model to predict the fluorescence images of BODIPY (lipid
droplets in LNCaP cells) from the phase-contrast images. This
model was then applied to the dataset of treated LNCaP cells to
evaluate how the drug-altered cell phenotype affects AI predictions.
The second dataset comprises images of LNCaP cells with four
different cell densities. In these images, the cells exhibit different
morphological phenotypes as a result of proliferation. The images
were divided into four subsets for evaluation purposes: 20% conflu-
ency, 50% confluency, 80% confluency, and 100% confluency. These
dataset allow us to systematically study whether our approach is
capable of flagging OOD data that have slight distribution shifts.
Comparison of uncertainty evaluation models

To understand how the performance of ensemble-based uncertainty
evaluation compares to that of other existing tools, we conducted a
systematic comparison of six common methods where three are
ensemble based (i.e., naive ensemble, BatchEnsemble (39), Snap-
shot ensemble (38), MC-Dropout (35), SVI (36,37,49), and SGLD
(33,34)). The central features of the tested methods and correspond-
ing parameters used in the comparative study are discussed below.

Naive ensemble

We trained six models independently with different random seeds.
The prediction results were generated by a simple average. The total
computational budget is 6B, where B is the budget to train onemodel
from scratch.

FastEnsemble

We first trained a standard checkpoint with budget B, then use
k2þk3
k1

B�5 to obtain the rest five models. In total, it costed
k1þ5ðk2þk3ÞÞ
k1

B. We chose k1 ¼ 200, k2 ¼ k3¼ 6 for the entire training
task.

BatchEnsemble

BatchEnsemble is a method that reduces the computational
and memory costs of performing ensemble calculations by opti-
mizing the ensemble weight generation mechanism.(39) We repli-
cated the BatchEnsemble code from official repository at https://
github.com/google/edward2/blob/main/edward2/tensorflow/layers/
convolutional.py#L560 and extended it to support ConvTranspose2d
layer. We matched the training budget of our method by increasing
the training time proportionally.

MC-Dropout

The MC-Dropout method is a framework that utilizes dropout
training in DNNs as approximate Bayesian inference in deep
Gaussian processes.(35). We used the dropout rate equaling to
p¼ 0:5. The computational budget is B.

SGLD

The SGLD method estimates the prediction uncertainty by adding
noise to a standard stochastic gradient optimization algo-
rithm.(33,34). We first trained the model until convergence (i.e.,
burn-in phase). At this stage, we did not inject Gaussian noise. Dur-
ing the inference time, we then trained the model for one epoch after
each sampling where the learning rate was 1000� smaller than the
training stage. No preconditioning technique was applied. We noted
that, although training budget was only B, the inference budget was
much higher than other methods.

SVI

The SVI algorithm approximates posterior distributions by conducting
stochastic optimization-based variational inference (36,37,49).We uti-
lized the implementation of MFVI from Pyro (https://pyro.ai/
examples/svi_part_i.html). The prior follows independent and identi-
cally distributed random variables (iid) N ð0; 0:02Þ.
Snapshot ensemble

The Snapshot ensemble algorithm leverages the cyclic learning rate
scheduling in stochastic gradient descent to create multiple model
snapshots with a single training process (38).

Furthermore, to fairly compare the computational time of these
methods, we set the number of epochs to be the same across all
methods except for naive ensemble (which is almost five times
longer). Although we cannot ensure the wall clock time in each
epoch to be the same (SVI and BatchEnsemble tend to be slower
due to more complex model architecture), the relative difference in
running time is negligible.
Receiver operating characteristic quantification of
prediction accuracy

To quantify the performance of uncertainty assessment for individ-
ual methods, we used them to evaluate the impact of cell type
mismatch and image impurities on prediction accuracy. To do
this, we manually labeled the local regions that contain mis-
matched cells (LNCaP cells) or impurities using bounding boxes
(red boxes in Fig. 6 a). Here, the cell type mismatch dataset was
created by artificially cutting images of LNCaP cells and superim-
posing them to images of MSCs. Examples of false positives (i.e.,
the prediction was accurate but flagged by our uncertainty algo-
rithm) and false negatives (i.e., the prediction was inaccurate but
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not flagged by our uncertainty algorithm) are denoted by yellow ar-
rows in Fig. 6 a.

We then defined the pixels inside bounding boxes as positive in-
stances S1. All pixels (both inside and outside bounding boxes) were
subsequently ranked by the uncertainty values in a descending order.
The top-k highest uncertainty pixels were then used to define S2 in-
stances. We then have TP@k ¼ jS1 XS2j, Precision@k ¼ TP@k= k,
and Recall@k ¼ TP@kjS1j. Here, Precision@k and Recall@k report
the model performance, and TP is the number of true positives.

Using the analyzed result, we then generated a receiver operating
characteristic (ROC) curve with TP@k as the y axis and FP@k as the
x axis (Fig. 6 b and c) for eachmethod. The ROC curve is a probability
curve that reports the true-positive rate against false-positive rate.
To further quantify ROC curves, we computed the area under the
curve (AUC) (50), in which higher AUC values indicate better model
performance in distinguishing the positive and negative classes.
The results are summarized in Table S1.

We found that the ROC curves of the naive ensemble and our
FastEnsemble method exhibit a very similar trend, whereas we note
that the naive ensemble is sim 5 � slower to train. The runner-up
group is the Snapshot ensemble and BatchEnsemble, which are as
fast as our FastEnsemble method. Additionally, we found that tradi-
tional approximated Bayesian inference methods (i.e., SVI, SGLD,
and MC-Dropout), did not perform as well as other methods on the
tested benchmark. Their suboptimal performance might be due to
the approximation being too coarse to make compelling Bayesian
inference, suggesting that a more precise Bayesian approximation
is required for image translation applications.
FastEnsemble

Despite the success of naive ensemble approaches, the naive
ensemble method requires independent training for individual
models, which could be time consuming for image-to-image training
tasks. We propose a simple but effective FastEnsemble method to
reduce the training time while maintaining the prediction accuracy.
Our approach builds upon the recent findings in mode connectivity
of local minimum (44), in which different local minima in the neural
network training objective were found to be connected by a “low-loss
valley.” Therefore, it is possible to traverse from one local minimum
to another through a path with small training loss. Starting from the
first local minimum w1, we propose an algorithm to traverse to
another local minimum w2 through this low-loss valley to avoid re-
training the model from scratch. Specifically, assume w1;.;wm

are the current models, to get wmþ1, we initialize the model from
wm and solve the following training objective:

wmþ1 ¼ argmin
w

1
n

Xn

i¼ 1

lðf ðxi;wÞ; yiÞ

� l

m

Xm

j¼ 1

kw � wmk1;
(1)

where the second term in Eq. 1 promotes the diversity of the solu-
tions. The characterization of our FastEnsemble method perfor-

mance is presented can be found in Table S1. Detailed description
of the training algorithm can be found in Algorithm S1.
RESULTS

Ensemble methods for AI prediction uncertainty

The goal of uncertainty estimation is to measure the
confidence of the AI model prediction. Previously, un-
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certainty estimation has been mainly discussed in
the context of multi-label classification problems
(51–54), where the output of the model, denoted by
f ðx;wÞ, is a single label. Here, we discuss the imple-
mentation of ensemble-based algorithms for uncer-
tainty evaluation in image-to-image translation tasks.

We employed the standard U-Net architecture (55)
for our proposed image prediction method. Here, we
chose Unet-256 configuration, with channel multiplier
(number of filters in the generator ¼ 64) and batch
normalization. Dropout is disabled except in the MC-
Dropout comparison model. In the model, we assume
f ð$;wÞ denotes the neural network parameterized by
w. Training a neural network is equivalent to finding
the parameters to fit the observed data pairs, which
can be written as argminw

1
n

Pn
i¼1lðf ðxi;wÞ; yiÞ, where

lð$; $Þ is the loss function measuring the discrepancy
between the ground truth output and model's predic-
tion and fðxi; yiÞgni¼1 are training data. We used sto-
chastic gradient descent as the optimizer for solving
the training objective. After training, the model trans-
lates each test image x into f ðx;wÞ. However, when x
is an OOD image, it will still output f ðx;wÞ with subop-
timal quality, leading to the importance of uncertainty
estimation. For image-to-image translation tasks, we
can obtain the uncertainty of individual pixel values
from each of the K predictions from each of the K
models. One advantage to a spatial uncertainty esti-
mation is to flag regions in predicted images that
may be OOD or highly uncertain compared to the
rest of the image.

Our uncertainty evaluation model trains N ¼ 6 inde-
pendent CNN models from the same set of training
data and runs each model over the test set, which out-
puts a single-channel, pixel-averaged prediction image
(Fig. 1 a). Using the difference in pixel values from the
generated images, we demonstrate an image map of
the Std, with brighter values indicating a higher Std
(Std map of Fig. 1 a). We found that the ensemble of
six independent models is sufficient for generating a
robust Std map (Fig. S1). By comparing the Std map
to the error map (i.e., deviance between target and
mean prediction), we observed a noticeable correla-
tion in the pixel intensity distribution, suggesting
that the prediction Std may capture the actual transla-
tion error.

Next, we quantified the relationship between Std
and error to calibrate the uncertainty across the
testing images. We first generated a scatter plot of
pixel-level intensity to illustrate this Std-error correla-
tion, where the prediction error diverges monotonically
with increasing Std as shown in Fig. 1 c. This observed
divergence of the Std-error relationship indicates that
a greater Std value corresponds to a higher chance of
observing larger actual errors. Since the diverging
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FIGURE 1 Demonstration and characterization of ensemble method and uncertainty map. (a) Schematic of the ensemble method, showing
independent training of N models that generate an average prediction and corresponding standard deviation (Std) between predictions. (b)
Left to right: example of a phase-contrast input image, target immunofluorescence image (ground truth), the respective AI prediction, error (dif-
ference between prediction and target), and Stdmap estimated by our ensemblemethod. (c) Scatter plot illustrating the correlation between the
pixel-level Std and error divergence (dashed lines). (d) Boxplot generated by binning the absolute error in Fig. 1 c, confirming the correlation be-
tween error and Std. Red line denotes a quadratic function fitted to the data 1:318e � 6xStd2þ1:026e � 3xStdþ7:662e � 4. The fitted function
is subsequently used for converting Std into uncertainty. Error bars represent standard deviation of the absolute error.
trend of the Std-error relationship cannot be described
by an one-to-one function, it is difficult to directly visu-
alize the correlation between error and Std by
comparing their maps. Therefore, to further analyze
this correlation, we performed equal-width binning of
the absolute error and plotted the binned value as a
function of Std (Fig. 1 d). We then fitted a quadratic
polynomial to the mean bin value. Here, we used the
quadratic form to describe the Std-error relationship
because of its mathematical simplicity and the mild-
ness of the data saturation. In the cases where the
data exhibit a more extended saturation plateau,
alternative functions, such as exponential saturation,
double exponential, and logistic function, can be
considered. We also found that the data points of
the top 10% of error values are very sparse and can
potentially reduce the reliability of fitting. We, there-
fore, excluded those data points during fitting to
ensure that the best fitting curve accurately captures
the overall Std-error relationship. The fitted quadratic
function (red line in Fig. 1 d) was subsequently utilized
to determine the pixel-wise uncertainty from the Std.
This calibration procedure was repeated for all molec-
ular markers and imaging conditions throughout all
experiments.
Ensemble-based uncertainty correlates with AI
prediction inaccuracy

To understand whether our uncertainty calculation pro-
vides a robust and consistent assessment of the AI pre-
diction accuracy, we performed the uncertainty
quantification for five different MSC markers and nu-
cleus staining. For each marker, we averaged the
pixel-level uncertainty and absolute error values over in-
dividual fields of view (FOVs) and plotted these results
in Fig. 2 a. We found a positive correlation (Pearson cor-
relation coefficient �0.83) between our calculated un-
certainty and absolute error across all six markers. In
addition, the dataset that was contaminated with
Biophysical Reports 3, 100133, December 13, 2023 5
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FIGURE 2 Ensemble-estimated uncertainty predicts image translation error across various MSC markers. (a) Positive correlation between
uncertainty and absolute error that are averaged over the field of view (FOV) for all five tested MSC markers and nucleus staining. In addition,
datasets that contain imaging artifacts (dark green, CD105-Impurities) also exhibit a similar correlation. (b) Uncertainty negatively correlates to
Pearson correlation coefficient (rs) for all tested models. (c) Independently trained AI predictions and uncertainty assessments can be com-
bined into an image composite reporting prediction performance for individual markers. (d) Ensemble-based uncertainty effectively detects
noncellular (white arrow) impurities in the image.
imaging artifacts (CD105-Impurities) exhibited a similar
trend. This finding supports approximating the error-
calibrated Std as uncertainty.

Next, we computed the pixel-pixel Pearson correla-
tion coefficient, rs, between the target and prediction,
in which a higher rs value indicates a more accurate
prediction. By comparing the rs with mean uncertainty
for each FOV in Fig. 2 b, we observed a negative corre-
lation between them for all tested markers. Since the
definitions of Pearson correlation and uncertainty are
strictly independent, we did not anticipate a universal
trend across different markers. Our observed anticor-
relation between rs and uncertainty further validated
our uncertainty quantification approach. Also, such a
finding suggests that our uncertainty assessment is
effective for all tested markers. Therefore, an advan-
tage of our uncertainty evaluation method is that it al-
6 Biophysical Reports 3, 100133, December 13, 2023
lows us to simultaneously assess the AI prediction
performance and combine different markers into one
image for an integrative assessment and visualiza-
tion. An example five-marker composite image is
shown in Fig. 2 c.

One application of our uncertainty evaluation is to
identify noncellular artifacts in the microscopy data.
Such impurities may corrupt the analysis statistics
and cloud interpretation of AI predictions. The impu-
rities commonly found in microscopy include precipi-
tated crystals in the staining buffer, air bubbles due to
pipetting errors, substrate scratches, and bacterial sub-
stances. In this work, we tested precipitated crystals as
a demonstration. Specifically, we first used impurity-
free data (baseline training set) for training the models,
and then deployed the trained DNNs for translating
phase-contrast images that contain impurities into
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FIGURE 3 Uncertainty evaluation in image translation of mouse kidney tissue sections. Ensemble-based uncertainty can also be used to
assess the labeling performance in tissue section images. (a) Example images of a mouse kidney section. The sample is fluorescently stained
for actin and counterstained for nucleus. In this test, we focused on predicting the actin signal distribution, in which the images from left to
right are phase contrast, fluorescent target, AI prediction, target-prediction error map, and the uncertainty map generated using our ensemble
method, respectively. (b) Boxplot generated by binning the pixel-level absolute error of the actin model, validating the correlation between error
and Std. Red line denotes the Std-uncertainty conversion function. Error bars represent standard deviation of the absolute error. (c) Positive
correlation between uncertainty and absolute error averaged over the FOV.
fluorescent images. As shown in Fig. 2 d, the artifact (ar-
row) caused noticeable mispredictions and strong
signal in the error map. At the same time, the pixels
that are covered by the contaminant also exhibit uncer-
tainty values that are significantly higher than those of
other areas. This result suggests that our uncertainty
evaluation can accurately flag the local contaminant
that should be excluded from further analysis.

Both the image translation and our uncertainty quan-
tificationmethods can be applied to a wide range ofmi-
croscopyapplications.Wedemonstrated this versatility
by repeating our uncertainty evaluation using images of
mouse kidney tissue sections (Fig. 3 a) in which the
sample was immunostained for actin and nucleus.
Following our calibration workflow, we calculated the
prediction Std and converted it into uncertainty. Like
the MSC markers, we found that the actin signal in the
section sample exhibited a clear error-Std correlation
(Fig. 3 b). We also found that the converted uncertainty
moderately correlated with the absolute error with a
Pearson correlation coefficient �0.57 (Fig. 3 c). This
demonstration suggests that our uncertainty assess-
ment canbe implemented invirtual histological staining
and other similar applications.
Evaluation of OOD data uncertainty

The assessments of AI prediction accuracy typically
rely on the direct comparison between prediction
and target images. In many biological experiments,
however, the ground truth images are strictly inacces-
sible and the prediction-target comparison is practi-
cally infeasible. In this case, although the DNN may
still generate visually convincing results, these AI-pre-
dicted images could potentially deviate from the
target. When applied in drug screening, toxicity
studies, or clinical applications, such misleading re-
sults could have severe consequences (56). The re-
sults in the previous subsection suggested that our
calibrated uncertainty should be able to detect OOD
data. To understand if our quantification method can
obtain a reliable metric for AI prediction accuracy
without access to the ground truth, we conducted sys-
tematic tests using a series of perturbed microscopy
images. Specifically, we tested six cases of OOD
data, in which the testing datasets exhibit different de-
grees of visual differences from the actual training
set: 1) image overexposure, 2) nonuniform illumina-
tion, 3) magnification mismatch, and 4) inconsistent
cell type and cell morphology changes arising from
5) drug treatment and 6) cell expansion. These sce-
narios can be mainly categorized into two groups: im-
aging condition variations (1–3), and sample
variations (4–6).

Applying these perturbations to models trained on
the CD105 dataset, we showed that our ensemble
method can identify test images that are drastically
different from the training data by reporting increased
Biophysical Reports 3, 100133, December 13, 2023 7
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FIGURE 4 Ensemble-based uncertainty flags OOD predictions. The calculated uncertainty successfully identifies OOD image data generated
by various types of perturbations, including overexposure (a and b), nonuniform illumination (c and d), wrongmicroscopemagnification (e and f),
and different cell type (g and h). Significant increase in uncertainty values (n¼15 FOVs) is observed in all perturbation cases.Note that the y axis
limits of (b), (d), (f), and (h) were adjusted to highlight the differences between conditions. For all barplots, ***p < 0.0001, in which the p values
were determined using two-sample Student's t-test. Error bars represent standard deviation.
uncertainty values. We selected the CD105 dataset
due to the high signal-to-noise ratio of the target and
accurate AI predictions. We generated the perturbed
images by modifying duplicated test images (i.e.,
phase-contrast images) using Fiji ImageJ. As shown
in Fig. 4 a–f, we found that all of the introduced image
perturbations successfully led to AI prediction errors.
We noticed that, although these errors may be de-
tected by trained experts, such mispredictions are
subtle and can be easily overlooked. For example,
the imaging overexposure caused an overall blurry pre-
diction with faint cell boundaries (Fig. 4 a). In the case
of nonuniform illumination (Fig. 4 c), the overexposed
upper right corner (yellow triangle) of the predicted im-
8 Biophysical Reports 3, 100133, December 13, 2023
age shows a cloudy and nonlocalized protein distribu-
tion. When the magnification is mismatched, we
observed a patchy and fragmented CD105 distribution
across the cell (Fig. 4 e), despite CD105 being a glyco-
protein surface marker that should be uniformly ex-
pressed throughout the cytoplasm.

Importantly, we found that our uncertainty assess-
ment successfully identified all these subtle errors.
First, the uncertainty maps showed elevated inten-
sities for all altered images (Fig. S2), in which the un-
certainty assessment correctly highlighted the upper
right corner in the nonuniform illumination case. By
averaging the pixel-level uncertainty value over the
FOV, our method reported a significant increase in



the mean uncertainty compared to the unperturbed
data for all tested OOD (bar charts in Fig. 4 b, d,
and f). This finding suggests that the uncertainty
mean can act as an indicator, labeling predicted im-
ages that should be further scrutinized or even
excluded. We further studied whether our uncertainty
calculation can detect prediction errors due to cell
type mismatch. To do so, we applied an AI model
that was trained using the MSC data to the images
of prostate cancer cells (LNCaP), which should not ex-
press CD105. As anticipated, the AI prediction con-
tains substantial errors, which were mostly detected
by our uncertainty assessment (Fig. 4 g and h).
Uncertainty evaluation of data with gradual
distribution shifts

An essential application of AI image translation is to
provide real-time molecular-based characterizations
of cells for pharmacological study. In this application,
the AI model predicts the cell characteristics or
expression levels of molecular markers that can either
evolve during natural cell growth or be altered by drug
treatments. Because of cellular dynamics, it is impera-
tive to ensure that the cell behavior is faithfully re-
ported by the AI prediction; however, it has remained
difficult to verify the black-box predictions in those
tasks (57). In this work, we studied the influence of
drug treatment and cell confluency on the AI predic-
tion and tested if our uncertainty estimation is able
to detect prediction errors.

To study how the drug-altered cell morphology af-
fects the AI prediction, we cultured prostate cancer
cells (LNCaP) and treated them with Enza, which im-
pairs cell growth and alters cell metabolism through
androgen receptor inhibition. A specific effect of
Enza treatment is the reduction of lipid droplets (i.e.,
lipogenesis) (58). Using the untreated samples, we
first trained an AI model that translates phase-
contrast images into fluorescent images of BODIPY
that stains the lipid droplets (Fig. 5 a). We then applied
this model to the test dataset of treated LNCaP cells
to obtain BODIPY image predictions (Fig. 5 b).
Compared to the control data, we confirmed that the
LNCaP cell morphology was altered and the BODIPY
signal was reduced (IF target) by the Enza treatment.
We also found that the AI model that was trained
only using the control data cannot fully capture the
drug-induced reduction in BODIPY signal (prediction
image in Fig. 5 b). Such a misprediction can be visual-
ized by the increased intensity in the error map (error
map in Fig. 5 b). At the same time, we found that the
ensemble method reports an elevated level of uncer-
tainty (uncertainty map in Fig. 5 b). By averaging the
uncertainty value and absolute error over the FOV,
Fig. 5 c and d show that our uncertainty quantification
effectively detects the OOD.

To understand how the cell proliferation-induced
sample alterations influence the AI prediction, we
seeded the LNCaP cells at a relatively low density
(20%) and acquired microscopy images until the cells
reached 100% confluency (i.e., 100% area coverage).
The distribution shift of this dataset mainly arises
from phenotypic changes associated with cell
density. Like the drug experiment, we trained a
model using control data, which are phase-contrast
and BODIPY images of 20%-confluency samples
(VSparse training set in Table 1). We then applied
this model to the datasets of 50% (Sparse), 80%
(Dense), and 100% (VDense training set in Table 1)
cell confluence (Fig. 5 e). We found that the
ensemble-predicted uncertainty increases with
increasing confluency (Fig. 5 f), consistent with the
mean target-prediction error calculation (Fig. 5 g).
This finding further confirms that the cell morphology
and density changes directly affect the AI translation
accuracy, which can be captured by the ensemble un-
certainty calculation.
Ensemble acceleration preserves the uncertainty
evaluation accuracy

Although the naive ensemble has been shown to pro-
vide am accurate estimate of prediction uncertainty, a
major weakness of this method is its computational
overhead for building independent models. Therefore,
it is critical to investigate new approaches to develop
uncertainty estimation methods with low-cost compu-
tation. To address this technical hurdle, we developed
an acceleration algorithm, FastEnsemble, which
searches for independent low-loss optimization paths
starting from the initial model (see section “materials
and methods”). We found that this directed optimiza-
tion approach allows us to complete a new model
training task with only 3%–5% additional training
time. For example, generating an ensemble of six
models using the naive ensemble approach requires
a computational time �6� single-model training
time, whereas the FastEnsemble approach requires
�1.2� single-model training time, quintupling the
training speed.

Furthermore, such an acceleration preserves the
high prediction accuracy achieved by the naive
ensemble. We empirically found that this approach
can lead to a diverse set of models w1;.;wK , which
gives an uncertainty estimation akin to the naive
ensemble method (Fig. 6). To quantitatively assess
the performance of the FastEnsemble method, we
used bounding boxes to manually label local image re-
gions that comprise inaccurate predictions. These
Biophysical Reports 3, 100133, December 13, 2023 9
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FIGURE 5 Distribution shift-based uncertainty evaluation Our uncertainty estimation is able to detect OOD datasets. (a) Example images of
the control model, which shows LNCaP cells stained for BODIPY. (b) Control model applied to phase-contrast images of LNCaPs that have
been treated with a chemo drug called enzalutamide (Enza). Treated samples show slight changes in morphology that lead to significantly
higher uncertainty estimation (c) in predictions compared to control group. (d) Mean absolute error (MAE) calculations verify uncertainty esti-
mation. (e) Cell culture expansion leads to confluency (cell density) difference over time, which can affect cell morphology and protein expres-
sion profiles. Uncertainty maps show increase in uncertainty estimation with increasing cell confluency. (f and g) Visual assessment can be
confirmed by numeric uncertainty and MAE comparison. Note that the y axis limits of (c) and (f) were adjusted to highlight the differences
between conditions. For all barplots, **p < 0.001 and ***p < 0.0001, in which the p values were determined using two-sample Student's
t-test. Error bars represent standard deviation.
inaccurate prediction incidents were either artificially
introduced (cell type mismatch) or identified using
phase-contrast input images (impurity).

We utilized our uncertainty evaluation methods to
classify incidents within these labeled image data.
Further details of this analysis can be found in section
“materials and methods.” The uncertainty assessment
accuracies of our FastEnsemble and naive ensemble
methods were then compared with five previously
published methods (i.e., MC-Dropout, SVI, SLGD,
BatchEnsemble, and Snapshot ensemble). The main
features and corresponding parameters of the tested
methods are summarized in the “materials and
methods” section. We then analyzed the correspond-
ing ROC curves (see section “materials and methods”),
as summarized in Fig. 6 and Table S1. We found
negligible performance difference between the
FastEnsemble and naive ensemble methods, both of
which outperformed the MC-Dropout (blue curve) and
10 Biophysical Reports 3, 100133, December 13, 2023
SVI (orange) methods. This result demonstrates that
we can preserve the performance while reducing
computational load. Notably, our FastEnsemble is
approximately five times faster than naive ensemble,
since each model training is initialized from previous
solution, substantially reducing the optimization
iterations.
CONCLUSIONS AND DISCUSSION

In this work, we found that ensemble-based deep
learning can effectively report the image translation
uncertainty, which is correlated with the absolute
error and Pearson correlation coefficient. We consid-
ered the problem of uncertainty estimation and
calibration in image translation under various distribu-
tion shifts, in which the batch effects (e.g., cell-cell
phenotype variation, batch-to-batch inconsistency, im-
aging condition differences) are the main reasons
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FIGURE 6 Quantification of the prediction accuracy. (a) Bounding boxes highlighting OOD area in the test images. Image samples from the
cell typemismatch dataset (top) and image artifact dataset (bottom). Commonmispredictions include distorted cell contours (upper row) asso-
ciated with cell type mismatches and speckles (lower row) associated with impurities in the experiment sample. The yellow arrows indicate
representative false-positive (third column) and false-negative (fourth column) events. Three different FOVs are shown for the image artifact
case (lower row), since we could not identify any FOV that contains multiple false-positive and false-negative incidents. (b and c) Comparison
of different ensemble-based uncertainty evaluations and other algorithms. ROC curves showing the relationship between the true-positive rate
and false-positive rate for identifying the cell type mismatches (b) and image artifacts (c). We found that naive ensemble and FastEnsemble
methods perform similarly, suggesting that both methods have a comparable sensitivity and specificity to diagnose translation predic-
tions.
responsible for the prediction error associated with
different imaging conditions and methods. We further
showed that our uncertainty assessment method can
be used to forecast translation error that is associated
with varying imaging conditions and specimen
alterations.

Compared to previous uncertainty studies that have
mainly focused on classification tasks, our work
demonstrated that ensemble algorithms can be em-
ployed to predict image-to-image translation errors,
in which experimental microscopy data were directly
used for all conducted tests. Furthermore, our
FastEnsemble method, which provides a sensitivity
and specificity akin to the naive ensemble and other
ensemble-based methods (e.g., BatchEnsemble and
Snapshot ensemble), presents a valuable alternative
approach to reduce computational costs in approxi-
mating posterior distribution. Since the ensemble
method simply evaluates the statistics of the AI
predictions, it can be straightforwardly integrated
with various deep-learning models that have been uti-
lized for labeling and processing microscopy data,
improving the trustworthiness of these cutting-edge
tools (2,3,8,9,59–62).

Overall, our model serves as a foundational step to-
ward robust AI image translation for biomedical appli-
cations; however, practical implementation of our
reported algorithms would require further develop-
ment. For example, although the proposed algorithm
focuses on pixel-pixel deviations, data-exclusion deci-
sions would require tools to flag highly uncertain fea-
tures in the microscopy data (63). In addition,
althoughmany studies have empirically demonstrated
the feasibility of ensemble-based uncertainty evalua-
tion, its underlying working mechanism remains not
fully understood. Thus, establishing further theoretical
Biophysical Reports 3, 100133, December 13, 2023 11



understanding will enable developments of more reli-
able uncertainty assessment tools. Last, it is impera-
tive to eventually improve the robustness of AI
labeling, where the AI model can still make accurate
predictions when encountering OOD images. In robust
machine learning, which is a rapidly growing field,
studies on distribution shift robustness are specif-
ically related to the microscopy application. Over the
past decade, promising advances have been made in
developing algorithms to quantify the model robust-
ness (64,65) and training frameworks to optimize the
model stability (66–68).
DATA AND CODE AVAILABILITY

Source code and software installation instructions are
publicly available at: https://github.com/xuanqing94/
BNNBench. All datasets listed in Table 1 can be ac-
cessed at the dryad repository (https://datadryad.
org/stash/share/sylqXwvnQC Mq6UzlxOS1OsFqPe9D
zX1DMtlmKBo603E) except for the MSC-CD105 data-
set, which has been previously published and
re-analyzed for this study. This dataset can be down-
loaded from https://ucla.box.com/s/7tbedrg3g6snr52
8xhnlf9r ivnt8o6q6.
SUPPORTING MATERIAL

Supporting material can be found online at https://doi.org/10.1016/
j.bpr.2023.100133.
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