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Investigating heterogeneities 
of live mesenchymal stromal cells 
using AI‑based label‑free imaging
Sara Imboden1,5*, Xuanqing Liu2,5, Brandon S. Lee3, Marie C. Payne1, Cho‑Jui Hsieh2 & 
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Mesenchymal stromal cells (MSCs) are multipotent cells that have great potential for regenerative 
medicine, tissue repair, and immunotherapy. Unfortunately, the outcomes of MSC‑based research and 
therapies can be highly inconsistent and difficult to reproduce, largely due to the inherently significant 
heterogeneity in MSCs, which has not been well investigated. To quantify cell heterogeneity, a 
standard approach is to measure marker expression on the protein level via immunochemistry assays. 
Performing such measurements non‑invasively and at scale has remained challenging as conventional 
methods such as flow cytometry and immunofluorescence microscopy typically require cell fixation 
and laborious sample preparation. Here, we developed an artificial intelligence (AI)‑based method 
that converts transmitted light microscopy images of MSCs into quantitative measurements of protein 
expression levels. By training a U‑Net+ conditional generative adversarial network (cGAN) model that 
accurately (mean r

s
 = 0.77) predicts expression of 8 MSC‑specific markers, we showed that expression 

of surface markers provides a heterogeneity characterization that is complementary to conventional 
cell‑level morphological analyses. Using this label‑free imaging method, we also observed a multi‑
marker temporal‑spatial fluctuation of protein distributions in live MSCs. These demonstrations 
suggest that our AI‑based microscopy can be utilized to perform quantitative, non‑invasive, single‑
cell, and multi‑marker characterizations of heterogeneous live MSC culture. Our method provides a 
foundational step toward the instant integrative assessment of MSC properties, which is critical for 
high‑throughput screening and quality control in cellular therapies.

Mesenchymal stromal cell (MSC) therapy offers a promising treatment option for inflammatory  disorders1, 
immune-mediated  diseases2, and neurological  damages3. MSCs are popular for their easy in vitro  proliferation4 
and ability to differentiate into various mesenchymal  tissues4,5. MSC tissue culture has been shown to modulate 
immune responses for autoimmune diseases, sepsis, and transplant  surgery6–9. The efficacy of these critical thera-
peutic functions is difficult to predict due to the inherent MSC heterogeneity, arising from variations between 
MSC donors, batches, and  clones10–13. Understanding and controlling this notorious cellular heterogeneity in vitro 
has been a central challenge in both basic and translational  research14,15. Unfortunately, it has been difficult to 
precisely define and measure such heterogeneity in live MSCs, since current MSC characterization methods are 
either relatively non-specific, time-consuming, or  invasive16,17.

Traditional MSC characterization methods have focused on analyzing either the morphological 
 phenotypes18–23 or expression of surface  markers24–27. While measuring cellular morphology allows for non-
invasive assessment of live cells, no strong scientific link has been established between cellular morphology and 
MSC characteristics. In contrast, molecular-based gene expression measurements, which primarily rely on immu-
nochemistry assays for quantifying protein expression, provide more rigorous analysis of MSC  characteristics28. 
The downside of these assays is that they usually require laborious sample preparation, damaging cell fixation, and 
repetitive experimental procedures for multiple marker  analysis29,30. Collectively, the inability to perform non-
invasive, instant, and biologically rigorous characterizations substantially limit the therapeutic potential of MSCs.

To address these technical challenges, we developed an AI-based label-free imaging platform for studying 
the characteristic heterogeneity in live MSCs. AI-based image translation approaches have been proven to be 
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useful tools for visualizing 3D organelle  structures30, distinguishing cell types and  states31,32, and improving 
image  quality33–36,  segmentation37, and  restoration38.

In this work, we developed a deep convolutional neural network (CNN) to predict immunofluorescent-like 
images using transmitted light microscopy data. This non-invasive imaging method allows us to directly observe 
gene expression on the protein level for multiple markers simultaneously in live MSCs. We demonstrated that 
the AI-translated immunofluorescence images showed a high degree of similarity to the ground truth and can 
be applied to quantitative studies. Using the results of our trained model, we combined gene expression levels of 
8 common MSC markers with the measurement of 12 morphological features to draw deeper conclusions about 
MSC heterogeneity. From clustering and PCA analysis we found that while both morphology and gene expression 
can be used to effectively identify MSC heterogeneities, they provide contrasting assessments on cell characteris-
tics. Lastly, utilizing the AI-predicted images, we performed further analyses to profile gene expression fluctua-
tions and characterize protein localizations on the sub-cellular level. Our model has potential to advance current 
methods for assessing cellular heterogeneity and can be broadly applied in clinical and therapeutic applications.

Results
Machine learning model development. Our machine learning (ML) model pairs two convolutional 
neural networks (CNNs), one a generator and the other a discriminator (Fig. 1a). The generator network, based 
on a U-Net architecture (Fig. S1)30,39, learns the nonlinear relationship between the phase contrast image and its 
corresponding fluorescent target. During training, the neural network minimizes the loss function that quanti-
fies the pixel-to-pixel differences between the predicted and target image. Here, the target is a fluorescent image 
of cultured MSCs at passage 3 that are immunofluorescently labeled (“Methods”). After propagating through the 
U-Net, the resultant image is loaded into the discriminator network, developed using a conditional generative 
adversarial network (cGAN) (Fig. S1)40, which evaluates the probability of similarity between prediction and tar-
get. During training, the discriminator output, an adaptive loss function, is iterated over a set number of cycles 
through the model to optimize the prediction. Following the completion of the iteration process, the resultant 
trained model was used for predicting virtual fluorescent MSC labels from unused phase contrast data.

We found that the trained AI model is able to predict images that closely recapitulate many features found 
in the target on multiple length scales. An example of model prediction is shown in Fig. 1b where the target is 
a fluorescent image of MSCs stained for CD105, a membrane glycoprotein that has been commonly used as a 
positive MSC marker. As demonstrated in the figure, the prediction captured the overall intensity distribution, 
cell morphology, and sub-cellular structures including protein localization and nucleus shape.

One advantage of our machine learning approach is the individual training process for each marker, allowing 
us to avoid emission channel cross-contamination in multi-color imaging and improve the fluorescent signal 

Figure 1.  Convolutional neural network (CNN) training for predicting marker expression. (a) Schematic of 
an iterative machine learning training operation. The generator produces a virtually stained prediction image 
using a U-Net architecture. The discriminator measures the probability of similarity between prediction and 
target and updates loss function parameters. (b) Left to right: example of a phase contrast input image, a target 
(ground truth) immunofluorescence image and the respective prediction image. (c) Individually trained marker 
predictions from a single transmitted light microscopy image combined into a multi-marker composite. (d, e) 
Performance of virtual surface marker prediction using the U-Net + cGAN model (orange) versus the U-Net 
only model (grey). Both (d), the Source Pearson correlation coefficient rs , and (e), the Laplacian Pearson 
correlation coefficient rlap , demonstrate higher values over all channels. Each data point represents one target-
prediction image pair, with outliers shown as diamonds. Boxplots were created by using OriginLab version 2019.



3

Vol.:(0123456789)

Scientific Reports |         (2021) 11:6728  | https://doi.org/10.1038/s41598-021-85905-z

www.nature.com/scientificreports/

specificity. Moreover, since individual models can be directly combined upon completion of training, there is no 
limit on the number of markers that can be predicted simultaneously from one phase contrast input. Applying 
this feature, we trained a panel of genes comprising 8 MSC markers, which were strategically selected to cover a 
wide range of MSC properties; the markers included CD105, CD90, and CD73 to define MSC  subpopulations41, 
CD29 to implicate cell  migration42, CD146 to show vascular smooth muscle  commitment43, CD106 (VCAM1)44 
and STRO-145 to illustrate MSC immunomodulation capacity, and CD44 to designate the cell-cell and cell-matrix 
 interactions46. We show the combined predicted image composite in Fig. 1c, in which each marker exhibits 
distinct distributions and local enrichments within the cells. We have shown that this approach can also be used 
to process stitched tile images (Fig. S2).

To evaluate the prediction accuracy of our model, we calculated the pixel-level Pearson correlation coefficient 
rs (“Methods”) between the prediction and target images. Overall, we observed fairly high accuracy in all tested 
markers with an rs average of ∼ 0.77 (Fig. 1d). However, the actual prediction accuracy depends on the specific 
marker of interest. For example, the surface proteins that show a more uniform distribution (e.g., CD105 and 
CD44) exhibit higher values of rs than the markers that show more protein localization (e.g., CD73 and CD29). 
By comparing our results with the data from a generator-only model (i.e., U-Net only), we found that the addition 
of a discriminator CNN improved both the prediction accuracy and robustness (Fig. S3) for most tested markers. 
Such improvements were also found in the Laplacian Pearson correlation analysis rlap (Fig. S4, “Methods”) that 
compares the Laplacian fields of prediction and target images (Fig. 1e). Here, the real-space analysis rs focuses on 
the overall intensity distribution, whereas the Laplacian-space analysis rlap highlights the details of signal varia-
tion. This prediction accuracy evaluation was repeated using a different measurement metric (absolute error)47 
and consistent results were obtained (Fig. S5).

Characterizations of predicted images. To characterize the robustness of our ML model, we studied 
how training data properties including dataset size, signal-to-noise ratio (SNR) of the target images, and the 
presence of impurities, influence the prediction accuracy. For simplicity, we focused on CD105 as it shows the 
highest Pearson correlation coefficient, allowing us to perturb the training data systematically.

First, we analyzed differences in prediction accuracy by modulating the number of training images. We 
found that with only 20 training images, relatively accurate predictions can readily be achieved by the ML 
model (Fig. 2a). Nevertheless, more training images still improved the prediction outcome, particularly for the 

Figure 2.  Characterization and robustness analysis of the proposed ML model with CD105 staining. (a) 
Comparison of a target image with prediction images resulting from a model trained with 20 or 1280 images. 
The ML training set consisting of 20 images accurately predicts boundaries of cells but fails to identify small 
spindle-like subcellular structures (arrows). (b, c) Performance of fluorescence image predictions measured 
by image-wise Source and Laplacian Pearson correlation coefficients as a function of the number of training 
images. A higher number of training images improve the predictions of details and rare events. For both 
boxplots, ns stands for not significant; *p < 0.05; **p < 0.001; ***p < 0.0001. (d) Simulating weakly expressed 
markers with step-wise lowering illumination. The first column displays immunofluorescent target images and 
the second and third columns represent a magnified target and prediction image, respectively, with adjusted 
brightness for better visualization. (e, f) Prediction performance across different excitation levels. Dim markers 
can be represented fairly robustly by our AI algorithm, with prediction differences primarily visible for small 
scale features such as detailed protein localization and fine morphological shapes. Dashed line in (e) indicates 
the theoretical maximum correlation between the target and optimal prediction images ( Cmax ). Error bars 
represent the standard deviation of the mean. All box and point plots were created by using OriginLab version 
2019.
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local intensity variation, as shown in the rightmost column of Fig. 2a. This observation is also illustrated by the 
analyses of rs (Fig. 2b) and rlap (Fig. 2c).

We also tested the sensitivity of our ML model to input images with varying signal-to-noise ratios (SNR). 
In doing this, we lowered the microscope illumination power stepwise and repeated the data acquisition and 
training process for nine different intensities (Fig. S6). This experiment aimed to simulate the imaging of fluoro-
phores with different emission intensities. Within the SNR range explored, we found that our ML model is able 
to reliably reproduce the input images without overfitting (Fig. 2d). We also found that our model smoothed the 
intensity distribution in low SNR images and effectively denoised the data, consistent with previous  findings40,48. 
To summarize the relationship between the prediction accuracy and image brightness, we plotted rs (Fig. 2e) and 
rlap (Fig. 2f) as a function of SNR. We also added a theoretical upper bound Cmax that assumes the pixel-level 
noise is uncorrelated for comparison (“Methods”). We found that rs(SNR) qualitatively followed the trend of 
Cmax(SNR) , maintaining a high value > 0.8 throughout all tested SNRs (Fig. 2e). However, rlap showed a more 
significant dependence on SNR, illustrated by its nearly halved value at SNR = 8 (Fig. 2f). We further identified 
that this more pronounced decay is attributed to both the weakly-correlated noise fluctuation and the less-
accurate prediction of local intensity (Fig. S7).

Lastly, we evaluated the impacts of the impurities in the images (e.g., microscope slide dusts, fluorescent 
speckles, non-specific binding) on the CNN training (Fig. S8). We tested three cases, in which either the train-
ing or test (for making new predictions) images contain impurities or both of them show artifacts. Our results 
suggested that the training set quality has a greater impact on the prediction accuracy than the test set quality 
(Fig. S8). This suggests that careful sample preparation and quality control of the training set plays a crucial role 
in achieving optimal prediction outcomes. In addition, we found that while impurities in the phase contrast 
images can propagate through to the prediction, most of the fluorescent speckles that only appear in the target 
images can be suppressed through ML training (Fig. S8a).

Multi‑marker heterogeneity. Our AI-based imaging approach opens up the possibility to perform a 
multi-marker characterization of MSCs in situ, which has been suggested to provide a more accurate description 
of the cell  state27,49. Compared to multi-color fluorescence-activated cell sorting (FACS), which has been com-
monly used for similar subpopulation analyses, our method is free from spectral overlaps and does not require 
complex compensation  procedures50. Specifically, since each model (marker) was trained with only one fluores-
cent channel at a time, the final multi-color composite is simply a combination of predictions from individually 
trained models. This training process is free from the influence of protein colocalization, and, theoretically, 
allows us to include unlimited markers for characterizing cells. We performed a single-cell analysis (Fig. 3a, 
Fig. S9) of 500 cells where we measured the overall fluorescent intensity over individual cells for all eight markers 
(Fig. 3b). This microscopy-based quantitative measurement has been extensively validated and conducted for 
evaluating gene  expression51–53. After calculating the cell-level overall pixel intensity, we plotted the prediction 

Figure 3.  Multi-marker heterogeneity and gene expression-morphology correlation. (a) Example of cell 
outlining and marker distribution for single cell analysis. (b) Histogram of standardized intensity distribution of 
500 single cells for 8 MSC markers. Percentages illustrate the standard deviation of each intensity distribution. 
Histogram was created by using OriginLab version 2019. (c) Hierarchical clustering of marker intensities and 
12 different morphological features analyzed from outlined cells. Marker intensity and morphological features 
lead to distinct clustering patterns. The color represents the fold change with respect to the mean value for each 
row. Clustering analysis (heatmap) was performed using Python version 3.8 (seaborn). (d) Principal component 
analysis (PCA) biplot of mean intensity of all tested surface markers with loading vectors (grey) of the five most 
prevalent markers. (e) PCA of marker intensity and morphological features color-coded based on Haasters’s 
 classification54. Green, blue, and red denote rapidly self-renewing (RS), spindle-shaped (SS), and flattened-
cuboidal (FC) phenotyes, respectively. Relatively orthogonal loading vectors suggest low correlation between 
morphology and marker intensity. PCA was performed using OriginLab version 2019.
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value versus the target value and determined the corresponding correlation coefficient (Fig. S10). Consistent 
with the pixel-to-pixel comparison (Fig. 1d), we also observed high prediction-target correlations for all tested 
markers.

In addition to quantifying the gene expression level, our approach also allowed us to simultaneously charac-
terize the MSC phenotypic morphology (Fig. S11, “Methods”), as it has been shown that non-invasive micros-
copy can potentially be used to predict the stem cell fate of human MSCs for clinical applications based on 
 morphology19,55. Such integrative gene-morphology datasets then enabled us to directly elucidate the relation-
ship between such essential cell properties. To visualize the correlation between the tested 20 variables (8 MSC 
markers and 12 morphological features), we performed an unsupervised hierarchical clustering analysis and 
created the resulting heatmap shown in Fig. 3c. The clustering indicated that while both MSC markers and cell 
morphology were able to separate cell subpopulations, their identified heterogeneities exhibited distinct patterns. 
Specifically, among all tested morphological features, we found that the cell aspect ratio and nucleus-to-cell 
ratio have higher correlations to MSC markers as they clustered together far from the rest of the morphological 
features. In contrast, nucleus area, cell total area, and perimeter show a clustering result that is less correlated 
with all other properties explored. Moreover, our data suggest that MSC markers provide additional orthogonal 
assessments on cell behavior that may not be fully revealed using the morphology analysis alone.

To further validate this finding, we conducted a Principal Component Analysis (PCA) to examine the cor-
relation between MSC marker expression and cell morphology (Fig. 3d,e). In addition, we used a previous mor-
phology-based categorization  protocol54 to divide the cells into three subgroups: elongated and spindle-shaped 
cells (SS, blue); small, triangular or star-shaped cells (RS, green); and large, flattened cells with prominent nuclei 
(FC, red). This additional characterization data was incorporated into our PCA gene-morphology plot to validate 
previous findings. In the PCA biplot, where only the MSC markers were used (Fig. 3d), we did not observe any 
segregation of the data points. As expected, after including the morphological features in the PCA (Fig. 3e), these 
previously categorized subpopulations showed indications of separation. This incomplete segregation may be 
attributed to human errors in classifying the cells based on visual grouping.

Our observed low correlation between surface marker expression and morphology are consistent with previ-
ous  studies19,56–59. For example, it has been shown that expression of MSC markers does not directly report the 
proliferation capacity and senescence of  MSCs56. Also, recent experiments have used the morphological pheno-
type to better quantitatively predict the MSC immunomodulation  potency19,57 and differentiation  potential58,59. 
In fact, many MSC markers were originally designed to exclude hematopoietic cells that are usually co-harvested 
during isolation. While they can effectively validate the identity and origin of  MSCs27,60,61, they may be insufficient 
to describe the cell state and function. Collectively, our gene-morphology data suggested that combining surface 
protein marker expression with morphological features could provide a more complete and specific evaluation 
of MSC heterogeneity. This finding highlights another important advantage of conducting cell assessment using 
our non-invasive AI-based imaging method.

Realtime gene expression measurement. Realtime gene expression assessment is crucial to evaluate 
MSC culture quality for basic research, therapeutics, and drug  screening12. Our AI-based microscopy allows us 
to perform instantaneous gene expression measurements on both the cellular and subcellular levels. Demon-
strating this technique, we acquired a phase-contrast time-lapse video of live MSCs over 48 hours and gener-
ated the corresponding AI-predicted fluorescent videos for 4 MSC markers, CD105, CD29, CD44, and STRO-1 
(Fig. 4a, Videos S1, S2). We validated the usage of ML models of fixed samples for predicting live cells by testing 
the influence of the fixative on the cell morphology. We found that no significant morphological change could 
be observed (Fig. S12). As shown in the predicted video, we observed significant fluctuations in the gene expres-
sion level, reminiscent of the stochastic gene expression findings in other  systems62,63. We analyzed and plotted 
the evolution of the overall expression level of a single cell in Fig. 4b. To validate the observed fluctuation, we 
highlighted the 60% confidence interval of the predicted value with gray bands (Fig. 4b), which was estimated by 
analyzing the distribution statistics of the prediction-target error, see Fig. S13. This prediction uncertainty was 
found to be < 2 % for all markers (Fig. S13c).

To understand the relationships of the fluctuations between MSC markers, we analyzed two types of marker 
cross-correlations. The first analysis averaged the overall cross-correlation values over different cells for a single 
time point. This calculation was performed using the dataset shown in Fig. 3. The second analysis, in contrast, 
averaged the marker cross-correlation over the entire temporal fluctuation for a single cell (Fig. 4b). By compar-
ing these analyses (Fig. 4c), we found that the fluctuation correlation (averaged over time) is significantly lower 
than the overall correlation (averaged over cells) for all tested markers. This reduced correlation value indicated 
that the observed temporal fluctuations are strongly influenced by uncorrelated noise, consistent with previous 
stochastic gene expression  experiments64–66.

While these fluctuations are relatively independent, we found that all markers exhibited a similar autocor-
relation decay trend (Fig. 4d). Here, the autocorrelation function characterizes the persistency of a temporal 
fluctuation. By fitting an exponential decay to the head of the curve, we found that all four markers displayed a 
correlation time around 40 minutes (inset of Fig. 4d). The minor anticorrelation in Fig. 4d may be attributed to 
the finite measurement  duration50.

Lastly, we analyzed the intracellular heterogeneity using the acquired multi-marker time-lapse data (Video 
S2). We calculated a projected intracellular heterogeneity by averaging the gene expression field over the vertical 
axis and determined the 1-dimensional profiles of gene expression level across the cell (Fig. S14). This calcula-
tion was then repeated for each time point, in which the final spatial-temporal matrices are illustrated using 
heatmaps shown in Fig. 5a–c. The heatmaps illustrated clear subcellular differential expression between all mark-
ers (CD105, CD29, STRO-1, CD44) throughout the cell and over time. CD105 (Fig. 5a) and STRO-1 (Fig. 5b) 



6

Vol:.(1234567890)

Scientific Reports |         (2021) 11:6728  | https://doi.org/10.1038/s41598-021-85905-z

www.nature.com/scientificreports/

Figure 4.  Spatial-temporal fluctuations of MSC marker expression. (a) Predicted time-lapse composite 
snapshots of a single cell at 0, 16, 32 and 48 h (left to right). (b) Total protein expression fluctuation for 4 surface 
markers (CD105, CD29, STRO-1, and CD44) of the predicted 48-h time-lapse video. Graph was created by 
using OriginLab version 2019. (c) Pairwise cross correlation between the tested markers. We calculated both 
the overall correlation (dark grey) and the fluctuation correlation (light grey) where the line thickness denotes 
the correlation magnitude. The fluctuation correlation (light grey) calculated using the single cell data is 
significantly lower than the overall correlation determined using all 500 cells, indicating remarkable stochasticity 
in the gene expression fluctuation. (d) Averaged autocorrelation functions (ACF) for all four tested markers 
exhibit a similar exponential decay. Inset shows the ACF decay rates, which are roughly the correlation time of 
them. (d) was created by using OriginLab version 2019.

Figure 5.  Prediction of temporal marker expression holds information on intracellular heterogeneity. (a, 
b) Heatmaps showing intracellular marker distribution and fluctuation for typical MSC surface markers. 
Fluctuation patterns vary significantly between tested markers indicating strong marker dependency within a 
single cell. (c) Protein localization differences of CD105 and STRO-1 underlining marker dependency. (d) 2D 
Fast Fourier Transform of heatmaps (a, b) revealing oscillatory frequency differences in time and space. Red 
and black arrows highlighting characteristic temporal and spatial fluctuation lengths, respectively. CD105 shows 
highest temporal and spatial fluctuation. Subfigures were generated using the OriginLab software version 2019 
(a–c) and Fiji  ImageJ79 software (d).
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showed the strongest expression difference. This differential expression was nearly 50% of the analyzed gene 
expression fluctuations (Fig. 5c). The distinct fluctuation frequency and persistency of these protein distribu-
tions were shown by the 2D Fast Fourier Transform (FFT) plots (Fig. 5d), in which CD105 displayed a temporal 
(red arrows) and spatial (black arrows) fluctuation that is more significant than that for STRO-1, CD29, and 
CD44. Our findings collectively indicated that the characteristics of the intracellular heterogeneity, which can 
be evaluated by the protein localization, are strongly gene dependent. While it would be interesting to further 
validate these findings using fluorescent reporters, creating such a multi-marker reporter line is challenging and 
beyond the scope of this work. Nevertheless, all of our analyses mainly focused on the statistical characteristics 
of the spatial-temporal gene expression fluctuation (e.g., correlation time and 2D FFT), minimizing the impact 
of potential ML prediction errors on the findings.

Discussion
Overall, we demonstrated that AI-based label-free microscopy offers a powerful experimental platform for con-
ducting non-invasive, quantitative, and multi-marker characterizations of MSC heterogeneity. With this tool, 
we found that the MSC morphology and conventional surface markers provide complementary assessments of 
the cell characteristics. On the cellular level, we showed that the stochastic gene expression fluctuations for all 
tested markers shared a similar correlation timescale. On the subcellular level, we observed and quantified the 
spatial-temporal variation of surface protein distribution. As a proof of concept, this work only focused on the 
MSC heterogeneity within a single-donor culture for similar passage numbers and seeding density. In the future, 
it would be informative to utilize a similar approach to investigate the heterogeneity associated with cell passage 
number, senescent  state67, donor variation, and media composition, factors that have been shown to have sig-
nificant impacts on MSC marker expression. Specifically, studying the relationship between MSC heterogeneity 
and replicative senescence would be particularly interesting, as it has been shown to be profoundly related to 
the characteristic, proliferation capacity, and multilineage potency of  MSCs68–70. Furthermore, in addition to 
the tested classical MSC markers, several genes (e.g. indolamine-2,3-dioxygenase (IDO)71, alkaline phosphatase 
(ALP) and  CD27172) have been recently shown to relate closely with MSC functions, providing an interesting 
opportunity for future study.

While AI-based microscopy presents many advantages over standard immunochemistry assays, many chal-
lenges persist. For example, it remains unknown whether the distribution of highly localized proteins (e.g. 
vesicle structures) or RNAs (e.g, telomeres), which are strictly invisible in the phase contrast images, can be 
accurately predicted by the ML models. Also, the black-box nature of CNNs provides limited information on 
how the model extracts transmitted light image features and translates them into fluorescent  signals31,73. Fur-
thermore, to apply this approach to high-throughput screening, it is crucial to develop reliable and automatic 
cell segmentation  tools74.

Nevertheless, the current imaging platform can already enable many exciting applications in both basic and 
translational studies of MSCs. For instance, by studying the gene expression fluctuation during cell division, it 
is possible to address the clonal heterogeneity origin, which has been hypothesised to be associated with asym-
metric partitioning of  MSCs75. By introducing relevant receptor, pathway signaling, and oxidative stress genes, 
our method will also advance the specificity, readout dynamics, and throughput of toxicity and pharmacokinetic 
studies. Broadly, the ability to instantly quantify MSC characteristics paves the way for controlling cell source 
quality, optimizing culture conditions, and engineering specific cell functions, all critical steps for advancing 
current MSC-based cell therapies.

Methods
MSC culture. Human bone marrow-derived MSCs (ATCC, PCS-500-012) were cultured according to the 
manufactures instruction and previously published  protocols76,77. In brief, after the MSCs were thawed, they 
were seeded into tissue culture flasks at a density of 5000 cells/cm2 with the culture media comprising DMEM 
(Gibco, 1 g/mL glucose, 500 mL), 10% fetal bovine serum (Gibco), and 1% Penicillin/ Streptomycin (Gibco). The 
MSC culture media was then replaced every 24–48 h. Subculture of MSCs was performed at ∼ 80 % confluency, 
in which the cells were washed with 1 × PBS −/− twice, and incubated with 0.5% Trypsin-EDTA at 37 ◦ C for 
cell detachment. The dissociated cells were then centrifuged at 250g for 3 min, resuspended in warmed culture 
media and reseeded at a seeding density of 5000 cells/cm2 . For experiments, we seeded passage-3 MSCs into 
2-well Ibidi slides (Ibidi, 80296) at a seeding density of 10,000 cells/cm2 . The experiment was carried out at least 
24 h after seeding to ensure cell attachment.

Sample preparation and immunostaining. To fix and immunostain the MSC samples, each Ibidi slide 
was first washed with PBS +/+. 4% PFA (Thermo Fisher Scientific, 28908) in 1 × PBS +/+ (Gibco) was used as 
the fixative. After 5–10 min of incubation, the slides were washed with PBS. For staining, the MSCs were first 
blocked using a mixture of 2% donkey serum (Sigma-Aldrich, D9663-10ML) and 0.5% Triton X-100 (Sigma-
Aldrich, T8787-50ML) for 30 min. After blocking, the slides were washed with PBS twice, and then incubated 
with the primary staining solution (0.5% BSA, 0.25% Triton X-100, and the primary antibody, see Supplemen-
tary Table S1). The slides were left in the staining solution for 30 min and then washed twice with 1 × PBS. After-
wards, the secondary staining solution (with NucBlue and the secondary antibody) was added for 30 min. We 
then washed the samples twice with PBS and added 0.1% Tween 20 (Sigma-Aldrich, P9416-50ML) for storage.

Transmitted light microscopy and fluorescent imaging. All stained MSC samples were imaged 
using an inverted microscope (Etaluma LS720, Lumaview 720/600-Series software) with a 20× phase contrast 
objective (Olympus, LCACHN 20XIPC) that allowed the acquisition of both phase contrast and fluorescence 
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images. Approximately 600–900 images for each channel (i.e., phase contrast, 405 nm, 488 nm, and 594 nm) 
were obtained with a field of view ∼ 380 µm ×380 µ m. To conduct the time-lapse experiment, the same micro-
scope and software was used in an incubator to image MSCs every 2 min over a period of 48 h (Videos S1, S2). 
While all of our selected antibodies have been previously validated, we also examined the non-specific binding 
by measuring the fluorescent intensity in samples that were only stained with secondary antibodies. Prior to 
further analyses, the background of the fluorescent data was evaluated and subtracted, following typical quanti-
tative immunofluorescent microscopy procedures.

CNN model training and characterization. Our model, consisting of a pair of generator and discrimi-
nator, was adapted from a previous image-to-image translation  work40. Specifically, we constructed our machine 
learning code using a Python deep learning library, PyTorch, ensuring that our AI platform is compatible with 
different operating systems. The architecture of the generator was the standard U-Net that has been widely used 
for image segmentation. In this work, it was modified as an image translator that transformed the phase contrast 
images into fluorescent-like data. In particular, the used U-Net model contained short-cut connections between 
hidden features at the same level, effectively combining the fine-grained input details with the high-level seman-
tics of shapes. The adapted discriminator was a multilayer CNN that used the concatenation of signal and target 
images as input, and generated a tensor containing the information for judging the prediction-target similarity. 
Instead of adopting the typical approaches to solving the classification problem in GAN, we utilized the least 
square loss, which has been shown to be a more stable  function78. Different CNNs were trained to predict the 
fluorescent images for individual markers, with the training data consisting of approximately 600–1500 pairs of 
phase contrast (input) and immunofluorescent (target) images.

To quantify the prediction accuracy of the CNN, the Pearson correlation coefficient between the target x and 
prediction y pixel intensities was evaluated as 

∑n
i=1

(xi − x̄)(yi − ȳ)/
[
∑n

i=1
(xi − x̄)2

∑n
i=1

(yi − ȳ)2
]1/2 . This 

calculation was applied to both the images and their corresponding Laplacian fields (kernel size = 31) in Python 
to obtain rs and rlap , respectively (Figs. 1d,e, 2b,c,e,f). The Cmax curve shown in Fig. 2e was evaluated using 
Cmax = E[Y ·Ŷ ]√

E[Y2]E[Ŷ2]
=

√

SNR
1+SNR  with SNR = σ 2

x /σ
2
ǫ  , which determined the upper bound of the target-prediction 

correlation where the signal noise is uncorrelated. To calculate the SNR values of the fluorescent images used 
for Fig.  2d–f, we used the Root Mean Square (RMS) method with the following formula: 
SNR = (Ssignal − Snoise)/Nnoise . The mean ( Ssignal and Snoise ) and standard deviation ( Nnoise ) of pixel intensities 
were measured using Fiji  ImageJ79.

Single cell measurement. We used the Fiji  ImageJ79 polygon selection tool to manually outline 100 cells 
for both the immunofluorescence images and the corresponding ML-predicted images. The outlined cells were 
then analyzed to evaluate the overall pixel intensity and the prediction accuracy (Fig. S9). We then repeated this 
outlining procedure to obtain 500 cell data points, in which the data were used for the multi-marker analysis 
and morphology measurements (Fig. 3). PCA (Fig. 3d,e) was performed using OriginLab (OriginPro, Version 
2019. OriginLab Corporation, Northampton, MA, USA). The unsupervised clustering analysis (Fig. 3c) was per-
formed using Python 3.8 (seaborn). Figures 3b and 4b,d were generated using OriginLab where for Fig. 4d, the 
autocorrelation function of Excel (RealStatistics package) was used. The heatmaps displayed in Fig. 5a–c, were 
obtained using Python v3.8 described in the Supplementary Information (Fig. S14). We used the Fiji  ImageJ79 
FFT command to compute the Fourier transform and display the frequency spectrum of the heatmaps display-
ing intracellular marker distribution. Heatmaps were converted to gray scale prior to FFT computation and a 
density-based 16 color look up table was applied to the resulting FFT to highlight the spectrum pattern (Fig. 5d).

Code availability
Accession codes Software for training and an example dataset is available https:// xuanq ing94. github. io/ ai- repor 
ter/.
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