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ABSTRACT The mechanical properties of tissues have profound impacts on a wide range of biological processes such as em-
bryo development (1,2), wound healing (3–6), and disease progression (7). Specifically, the spatially varying moduli of cells
largely influence the local tissue deformation and intercellular interaction. Despite the importance of characterizing such a het-
erogeneous mechanical property, it has remained difficult to measure the supracellular modulus field in live cell layers with a
high-throughput and minimal perturbation. In this work, we developed a monolayer effective modulus measurement by inte-
grating a custom cell stretcher, light microscopy, and AI-based inference. Our approach first quantifies the heterogeneous defor-
mation of a slightly stretched cell layer and converts the measured strain fields into an effective modulus field using an AI
inference. This method allowed us to directly visualize the effective modulus distribution of thousands of cells virtually instantly.
We characterized the mean value, SD, and correlation length of the effective cell modulus for epithelial cells and fibroblasts,
which are in agreement with previous results. We also observed a mild correlation between cell area and stiffness in jammed
epithelia, suggesting the influence of cell modulus on packing. Overall, our reported experimental platform provides a valuable
alternative cell mechanics measurement tool that can be integrated with microscopy-based characterizations.
SIGNIFICANCE Investigating tissue stiffness is critical for understanding fundamental cell behavior such as cell
migration, development, and division (8). Although tools for characterizing tissue stiffness have recently been developed, it
remains challenging to measure the supracellular modulus field of live cell layers with a high-throughput and minimal
perturbation. In this work, we integrated a custom cell stretcher, light microscopy, and an AI-based inference model to
characterize a tissue’s supracellular modulus distribution by slightly deforming a cell layer cultured on an ultrathin and
ultrasoft polymer membrane. In addition to measuring the mean effective modulus and modulus fluctuation for both
epithelial and fibroblast layers, we identified a modulus correlation length spanning a few cells and a mild correlation
between cell area and stiffness.
INTRODUCTION

The mechanical properties of tissues play an essential role in
regulating various biological processes and can be used as a
biomarker for label-free, low cost, and rapid disease diagnosis
(1,9–15). During embryogenesis, tissue viscoelasticity in-
structs the differentiation,migration, and organization of cells
(12–15). In developed organs, tissue stiffness regulates the
cellular homeostasis and physiological functions (1,9). In
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diseased organs, tissue modulus has been shown to act as a
physical cue influencing the pathogenesis and progression
of fibrosis (9), asthma (16), andCrohn disease (17).Moreover,
the tumoral tissue elasticity has been found to correlate with
malignancy, metastatic potential, and drug resistance (10,18).

To study these mechanically regulated processes, the abil-
ity to characterize cell modulus heterogeneities at the supra-
cellular scale is critical. For example, cell migration is
largely impacted by local cell stiffness, which determines
the system’s response to the intercellular force (19–21).
This cell modulus variation has also been shown to induce
cell competition that functions as a quality control mecha-
nism by expelling ‘‘loser cells’’ (22,23). Recently, it has
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Cell Layer Mechanical Heterogeneities
been demonstrated that this modulus-regulated cell compe-
tition can be harnessed as a defense against precancerous
cells (24,25).

Although many pioneering cell stiffness measurement
methods have been developed in the past few decades,
characterizing the supracellular spatial distribution of
cellmodulus remains challenging.Oneof the earliestmethods
for measuring cell modulus is micropipette aspiration, a cost-
effective technique that can track a sample’s mechanical
properties over time in vivo (26,27). Although micropipette
aspiration can achieve a cell-level resolution, it does so in a
low-throughputmanner and requires cell detachment for char-
acterizing adherent cells (26,28). Atomic force microscopy
(AFM) is currently the most widely used tool for studying
adherent cell stiffness at a subcellular resolution. When using
a pyramidal tip, the measured modulus, however, may corre-
spond to a specific organelle that does not represent the overall
cell stiffness, introducing uncertainties in interpreting the
supracellular measurement (29–31). Moreover, depending
on the indentation used or region probed, it can be difficult
to distinguish the cellular contributions to the measurement
from that of the substrate for penetration depths greater than
10% of the cell thickness (18). Lastly, AFM cannot directly
probe the in-plane modulus of the monolayer, which is more
relevant to physiological processes compared with the trans-
verse modulus typically acquired by AFM.

Another common technique ismagnetic twisting cytometry
(MTC), which is a high-throughput method able to charac-
terize hundreds of cells by twisting magnetic microbeads
that bind to membrane receptors (32). The binding of the
microbead to the cell surface, however, can induce formation
of focal adhesion complex, which reorganizes the cytoskel-
eton and can alter cells’ rheological properties. Additionally,
the substrate can interfere with the MTC measurement, akin
to AFM (32). Similar to the working mechanism of MTC, a
recent experiment used magnetic droplets to probe the local
tissue stiffness. Although this method addresses the cytoskel-
etal reorganization and substrate issues, it can be difficult to
generate cell-scale ferrofluid droplets, which determine the
spatial resolution of the measurement (33). Cell shape-based
inference models are a nonperturbative approach for extract-
ing amonolayer’smechanical property at the cellular or tissue
level using microscopy (34). In this method, only stress is
directly determined, thus requiring independent local strain
measurements to infer the modulus (35–37), in which this
approach, however, has remained untested. Alternatively,
cell stretchers are a versatile device that have been routinely
used to characterize in vitro cell monolayer mechanics. It
has been demonstrated that by either culturing cell layers on
thin elastomer substrates or by detaching intact cell layers
from the substrates, the overall monolayer stiffness can be
determinedusing a stretcher (11).Buildingupon these studies,
we developed a monolayer mechanics measurement platform
by integrating a custom-built stretcher, transmitted light mi-
croscopy, and AI inference. This integration allows us to
directly visualize the heterogeneous effective modulus field
in live cell monolayers. Additionally, we unmask themechan-
ical contributions of cells from the substrate by growing
the cells on a soft (12.7 kPa) and thin (18.9mm)biocompatible
membrane (Fig. 1 A and B). Our stretcher features an imaging
window that enables us to conduct high-magnification
transmitted light microscopy during experiments, which re-
solves the supracellular variation of cell deformation due to
the applied strain. The AI inference model then converts the
measured deformation field into an effective modulus field
(Fig. 1C).Using thismeasurement platform,we characterized
the effective modulus distribution in live epithelial (Fig. 1 D)
andfibroblast cell layers. These results allowed us to identify a
mild correlation between cell moduli and morphological fea-
tures in jammed Madin-Darby canine kidney (MDCK) cells.
MATERIALS AND METHODS

Cell culture

MDCK cells were cultured in 1X Dulbecco’s Modified Eagle media (Gibco,

11,885,084) supplemented with 5% fetal bovine serum (Gibco, 16,000,044)

and 1% penicillin-streptomycin (Gibco, 15,140,122), where media was

changed every 2 days. During weekly subculturing, �80% confluent cells

were passaged using 0.05% trypsin-EDTA (Gibco, 25,300,054). 3T3 cells

were cultured using the same base media but supplemented with 10% fetal

bovine serum and 1% penicillin-streptomycin with all other conditions

identical to that of the MDCK cells. MDCK and 3T3 cells were seeded us-

ing a density of 10,000 cells/cm2.
PDMS membrane fabrication

To fabricate the polydimethylsiloxane (PDMS) membrane, we spin coated

Sylgard 184 (base-curing agent ratio ¼ 50:1) at a 2000 RPM speed for

5 min on a glass coverslip that was previously coated with 10% (m/v%)

polyvinyl alcohol (PVA) at a speed of 1000 RPM for 2 min. We found

that using concentrated 10% PVA for coating the sacrificial layer ensures

membrane thickness uniformity. After attaching a cell stretcher jig to the

PDMS surface, the composite was then cured at 150�C for 35 min. The

PDMS-jig setup was autoclaved, treated with 25 mg/ml fibronectin (R&D

Systems, 1030FN05M), and incubated at 37�C for 30 min. The sample

was then washed with phosphate-buffered saline twice before seeding cells

at a 10,000 cells/cm2 density. During culture, the media dissolved the water-

soluble PVA layer, lifting-off the PDMS from the coverslip.

To measure the stiffness of the PDMS, we fabricated and clamped

70 mm � 18 mm � 2 mm PDMS strips to an Instron 5944 and stretched

it at a rate of 10 mm/min. The acquired stress-strain curves were used to

calculate the Young’s modulus by analyzing their slopes in the linear

regime (Fig. S1 A). PDMS membrane thickness was characterized by

optically imaging (40X objective) the cross-section of a PDMS layer

on the coverslip (Fig. S1 B) and measuring its thickness using ImageJ

(Figs. S1 C–E).
Cell stretching data acquisition and analysis

To prepare the cell-PDMS bilayer sample for stretching (Fig. S1 F), the

bilayer spanning the two jig legs was cut and then mounted to the cell

stretcher as shown in Figs. S1 G and S2 A. Subsequently, media was added

to the media chamber to submerge the sample, and the supportive T-bar was

removed. The stretcher assembly (Fig. S2 B) was placed on a microscope

(Nikon Ti) and stretched the sample at a rate of 25 mm/s until 5% strain
Biophysical Journal 121, 3358–3369, September 20, 2022 3359



FIGURE 1 Visualization of mechanical heterogeneities in cell monolayers

(A) By growing a cell monolayer (MDCK) on an ultrasoft PDMS membrane, the cell mechanical heterogeneity, which is illustrated by distinct Hookean

springs, can be revealed by stretching the bilayer system. (B) 3D reconstruction of a cell-PDMS bilayer tested in our experiment. (C) An AI inference model

is used to convert experimentally measured strain fields into effective modulus distributions, in which the inference model (generative adversarial network

U-Net) is trained using finite element analysis data. (D) Example differential interference contrast (left) and effective modulus (right) data of MDCK cells.

Dashed box indicates the zoom-in area. (E) Our cell stretcher applies a uniform tensile strain to a freestanding cell-PDMS bilayer suspended by the jig legs,

using piezomotors. The imaging window allows for microscopy while containing the media during experiments. For (B), scale bar represents 50 mm. For (D),

scale bars represent 200 mm and 50 mm for top and bottom images, respectively. For (E), scale bar represents 2.5 cm.
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(0.5%strain/sec), corresponding to a 250-mm stretch for a duration of 10 s.

Simultaneously, differential interference contrast images were acquired us-

ing a 10X objective (NA 0.45) at 20 fps. The acquired images were regis-

tered using the ImageJ plugin StackReg (38) and used for particle image

velocimetry (PIV) analysis with PIVlab (39) to determine the displacement

of cells between the initial unstretched image and the final stretched image.

Strain-xx (εxx ¼ Dux=Dx), strain-xy (εxy ¼ 0:5ðDuy =DyþDvx =DxÞ), and
3360 Biophysical Journal 121, 3358–3369, September 20, 2022
strain-yy (εyy ¼ Dvy=Dy) values were calculated and assigned to points in

the image using MATLAB, where Dux is x-displacement difference of

x-adjacent elements, Duy is x-displacement difference of y-adjacent ele-

ments, Dvx is y-displacement difference of x-adjacent elements, Dvy is

y-displacement difference of y-adjacent elements, Dx is x-position differ-

ence of adjacent elements, and Dy is y-position difference of adjacent

elements.



FIGURE 2 Heterogeneous strain responses in MDCK monolayers

(A) After measuring the effective modulus of the cell-PDMS sample, we used trypsin to detach the cells and measured the cell-free PDMSmembrane modulus. (B)

Stress-strain curves for cell-PDMS (MDCKþ PDMS) and PDMS samples. Shaded area denotes the SD. (C) Using theHookeanmodel illustrated in Fig. 1A,MDCK

stiffness (4.05 1.5 kPa) was estimated using Eq. 1. n¼ 16. (D) Differential interference contrast image of a stretched MDCK sample annotated with displacement

fields. (E) Heatmap of the xx component (εxx) of strain calculated from the displacement field in (D). (E–H) Close up of (E) showing heatmaps of εxx , εxy, and εyy,

respectively. (I) Histograms for all strain components fitted by Gaussian curves. Scale bar for (D)–(E) represents 200 mm. Scale bar for (F)–(H) represents 50 mm.
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Cell-PDMS bilayer mechanical measurement

To measure the overall sample stiffness, the cell-PDMS bilayer was cycli-

cally stretched to 5% strain using the cell stretcher while force was recorded

by a force transducer (FUTEK LSB201 LSB205 Load Cell). After this, the

media in the chamber was replaced with 0.5% trypsin-EDTA and the sam-

ple was incubated at 37�C for cell detachment (Fig. 2 A). After confirming

cell detachment using light microscopy, the cell-free PDMS membrane was

then again cyclically stretched to 5% strain while force was measured.
AI inference model training

To generate the datasets for training the strain-to-modulus AI inference, we

performed a series of finite element analyses (FEAs) that described the me-
chanical response of cell-PDMS bilayers under tensile strain. The PDMS

and cell layers were individually modeled in 3D using triangular shell ele-

ments in Abaqus, in which the model parameters including cell mean

modulus (4.0 kPa for MDCK and 12.2 kPa for 3T3 cells), cell height

(9.2 mm for MDCK and 6.3 mm for 3T3 cells (40)), Poisson ratio (0.5 for

both MDCK and 3T3 cells (41,42)), PDMS modulus (12.7 kPa), and

PDMS thickness (18.9 mm), were either taken from previous studies or

determined experimentally (Fig. S1). We discretize the finite element to

16,638 three-node elements, in which the size of the FE mesh is controlled

to be �8.3 mm. This fine mesh setting allows us to vary the length scale of

heterogeneities in FEA simulations on supracellular scales, in which all

data were included for AI model training.

The cell layer and PDMS membrane were modeled as incompressible

elastic materials. We impose material continuity in simulations, suggesting

that the cell layer mechanically interacts with its surroundings, where the
Biophysical Journal 121, 3358–3369, September 20, 2022 3361
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interpretation of such continuity may have different implications depending

on the size of the cell. Specifically, for small (10–15 mm) MDCK cells, this

continuity implies that cells are directly interacting with neighboring cells,

whereas in larger (�50 mm) 3T3 cells, this continuity implies continuity of

cellular components within a cell.

To simulate cell modulus heterogeneity, we generated random cell

modulus fields from normal or log-normal distribution with an SD ranging

from 30% to 70% of the mean modulus. In simulation, one side of the

sample was uniaxially stretched to 5% strain where a nonslip boundary con-

dition was applied at the cell-PDMS interface.

In other cell stretching experiments, cell-substrate adhesions

have been observed to remain intact and stable, especially for short

time and length scales (43–45). The displacement of individual cells

was recorded, and the corresponding strain fields were calculated

(Fig. S3 A). The resulting strain (εxx, εxy, and εyy) and modulus fields

were loaded into the AI model training framework, as summarized in

Fig. S3 B.
Statistical analysis

Data were reported as mean values 5 SD. Statistical analysis was per-

formed using OriginLab. Statistical significance was determined using

paired t-tests. Significance levels are indicated with asterisks in each figure.

p-values less than 0.05, 0.01, and 0.001 were denoted by *, **, and ***,

respectively.
RESULTS

Visualizing monolayer mechanical
heterogeneities

To visualize the spatially varying mechanical properties of
cell monolayers, we cultured MDCK cells on a PDMS mem-
brane (Fig. 1 B) and imaged its heterogeneous response to a
tensile strain. During stretching, the tested cell-PDMS bilayer
behaves analogously to a spring system, in which individual
cells with different moduli can be considered as springs
with different spring constants (Fig. 1 A). In this approach,
it is critical to use a thin, soft, and freestanding PDMS mem-
brane to prevent the substrate frommasking the cell contribu-
tion to the overall strain response. Stretched elastomeric
membranes such as PDMS have been routinely used to
demonstrate uniform displacement fields and have been
widely used for characterizing cell deformation (46–48).

The freestanding PDMS membrane was fabricated by
adapting a previous protocol (49,50) in which a sacrificial
PVA layer was utilized to facilitate the membrane lift-off
process, as described in PDMS membrane fabrication. We
then mounted the sample on our custom-made cell stretcher,
which features an imaging window that is compatible with
inverted microscopy and functions as a cell culture media
reservoir (Fig. S2 A). The piezomotors of our stretcher pro-
vide stretching motion stability to ensure imaging focus dur-
ing experiments. To prevent folding and tearing of the thin
bilayer, the two jig legs that suspend the sample are fixed
by a connecting T-bar during handling, which is then
removed after sample mounting (Fig. S1 G).

To confirm that the mechanical contribution from the
cells can be observed in our bilayer system, we used a force
3362 Biophysical Journal 121, 3358–3369, September 20, 2022
transducer to measure the stress response difference be-
tween the cell-PDMS bilayer and PDMS-only samples.
We first measured the effective modulus of the bilayer and
repeated the measurement for the cell-free PDMS mem-
brane by enzymatically detaching the cells (Fig. 2 A). This
procedure is similar to the cell removal protocol routinely
used in traction force microscopy for characterizing the sub-
strate deformation (51,52). As shown in Fig. 2 B, we found
that the cell-PDMS bilayer stress-strain curve exhibited a
slope greater than that of the cell-free PDMS, which is
attributed to the mechanical contribution from the cell layer.
Using the spring analogy as depicted in Fig. 1 A, we then
calculated the cell monolayer modulus (Fig. 2 C) Ec:

Ec ¼ EbðAm þ AcÞ � EmAm

Ac

� 4:05 1:5 kPa (1)

Here, Eb¼ 16.7 5 1.5 kPa, Em¼ 12.7 5 4.2 kPa, Am¼
18.9 5 0.5 mm, and Ac¼ 9.2 5 0.7 mm is the bilayer effec-
tive modulus, membrane modulus, membrane cross-
sectional area, and cell monolayer cross-sectional area,
respectively for MDCK samples. In MDCK FEA simula-
tions, Ec was used as the mean modulus, and Ac was deter-
mined using confocal microscopy (Fig. S1 F). The
remaining parameters were determined as described in AI
inference model training. In addition, using a similar mea-
surement approach, MDCK cells treated with 25 mM bleb-
bistatin for 24 h exhibited a threefold lower modulus
compared with untreated MDCK cells (Figs. S4 A–D).
This finding further validates that the PDMS membrane
can reveal the mechanical contribution arising from the
cell layer.

After validating the mechanical contribution from cells in
our bilayer samples, we mounted the stretcher on a micro-
scope and applied a 5% tensile strain to a cell-PDMS sample
while simultaneously imaging cell deformation. With the
acquired image data, we performed PIV to determine the
displacement field (Fig. 2 D) resulting from the stretch.
Since our applied tensile deformation is symmetric, the
displacement field shows minimal x-y translation, which
maximizes the analyzable field of view.

We then calculated the corresponding strain fields, where
the components (εxx, εxy, and εyy) are shown in Fig. 2 E–H.
Specifically, we found that εxx has a mean of�4.9%, which
was consistent to the applied global strain value. In agree-
ment with previous studies (53,54), we observed spatial
fluctuations in all strain components, which suggest the
presence of mechanical heterogeneity in the tested
MDCK monolayer. For example, εxx had a relative SD of
�20%. Additionally, we found that εxy and εyy have mean
values and fluctuations an order of magnitude less than
that of εxx (Fig. 2 I), which was anticipated since the stretch
was applied uniaxially in the x-direction. Importantly, all
these values are greater than the strain uncertainty associ-
ated with PIV limitations (55). Furthermore, the high
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image resolution (1 pixel �0.65 mm) of our system allowed
us to visualize strain field heterogeneity at the cellular
level. As shown in Fig. 2 F, we found that the strain fluctu-
ation of εxx spans a few cells. This finding is consistent with
the cell mechanical heterogeneity found in AFM measure-
ments (56) and freestanding epithelium stretching experi-
ments (42).
FIGURE 3 Strain-modulus AI inference

(A) Comparison of the modulus fields generated by FEA simulation

(Target), predicted by the AI inference model, and predicted from only

strain-xx values. (B) Pearson correlation between the target modulus values

and predictions made using the AI inference, εxx, εxy, and εyy. We found that

εxx exhibits a higher correlation than xy and yy components, and AI-pre-

dicted values are significantly more correlated than εxx. Scale bars for (A)

represent 200 mm.
Converting strain responses to modulus fields

The strain field of a deformed material is directly deter-
mined by the moduli of its constituents and the globally
applied strain. Conversely, having access to the strain com-
ponents of cells within a stretched cell monolayer allows us
to infer the effective modulus field from the strain fields.
However, converting strain fields into a modulus distribution
can be challenging due to their complex relationship in
structurally disordered and mechanically heterogeneous
systems. In our approach, the deformation of a cell is influ-
enced by both its own stiffness and the surrounding modulus
field. Thus, the determination of local effective modulus
values requires the knowledge of the entire strain fields
for all components, rather than just the value at a local po-
sition. To capture such a high-dimensional strain-modulus
relationship, we employed a U-Net based neural network
architecture that analyzes both strain and modulus fields
across multiple length scales. Specifically, our AI model vu-
tilized a generator and a discriminator, which are both con-
volutional neural networks (Fig. 1 C). The generator
network was based on a U-Net architecture (59,60) and
learned the nonlinear relationship between the FEA simu-
lated εxx, εxy, and εyy distributions and its corresponding
FEA simulated modulus distribution. During the training
process, the neural network minimizes the loss function
by calculating the pixel-to-pixel differences between the
prediction and target. Here, the target is the FEA simulated
modulus distribution of a cell layer. Our three strain inputs
first propagated through the U-Net, where the resulting
generator output (predicted modulus) was loaded into the
discriminator network. The discriminator network then
used a conditional generative adversarial network (61) to es-
timate the probability of similarity between the predicted
and target image. The discriminator output, which is an
adaptive loss function, is iterated over a set number of cycles
through the model to optimize the prediction. Once this iter-
ation process is completed, the resulting trained model was
used for predicting effective modulus distributions of cell
layers from experimental εxx, εxy, and εyy distributions.
Similar methods have been commonly utilized in a wide
range of 2D field conversion tasks including the translation,
segmentation, and classification of image data (62–64).

To train our AI model, we used FEA to numerically
model a stretched bilayer system that closely recapitulates
the heterogeneous modulus distribution in the cell mono-
layer. Specifically, since our experiment operates on the
time scale of seconds, we model our cell and PDMS layer
individually as elastic materials (65–67). Here, we assume
a nonslip boundary condition between the cell and PDMS
layers such that the applied strain results in a direct mechan-
ical deformation of cell layer (Figs. S5 A–C). This training
framework is synthetic data based, which has been
commonly used in vision research, and has shown to yield
robust and traceable AI prediction performance (68,69).
More importantly, the use of FEA data grants us access
to the strain inputs εxx, εxy, and εyy and the corresponding
modulus outputs (i.e., ground truth), which is infeasible
to obtain experimentally. The AI model was trained by
utilizing the generated FEA data to infer the general
strain-modulus relationship, which was used to construct a
conversion function capable of determining the effective
modulus field from experimental strain fields.

To characterize the AI prediction accuracy, we compared
the ground truth (i.e., modulus distribution assigned in FEA)
to the AI-predicted effective modulus field (Figs. 3 A and S6
A). Additionally, to test whether a single-component strain
measurement would be sufficient for inferring the effective
modulus field, we included an εxx predicted modulus distri-
bution, which was obtained by using the best fit between
FEA simulated εxx and modulus values (Fig. S6 B). We
found that although the effective modulus field can be
roughly estimated using solely the tensile strain component,
εxx, the most accurate effective modulus field is inferred by
considering the spatial distribution of all three strain
Biophysical Journal 121, 3358–3369, September 20, 2022 3363
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components. As shown in Fig. 3 A, the AI prediction cap-
tures both the localization and fluctuation level of the
modulus ground truth significantly better than the εxx predic-
tion, suggesting that some mechanical heterogeneities are
only reflected in the spatial distribution of εxy and εyy.

To quantify the accuracy of different effectivemodulus pre-
dictionmethods, we calculated the Pearson correlation coeffi-
cient between ground truth modulus values and the values
predicted using theAI, εxx, εxy, and εyy inferences. Our results,
shown in Fig. 3 B, suggest that the strain components εxy, and
εyy alone do not provide adequate information for predicting
modulus. Furthermore, we found that the AI prediction accu-
racy (correlation �0.91) is significantly higher than that
achieved by εxx prediction (correlation �0.66). This finding
confirms our hypothesis that the spatial distribution of all
strain components is required to accurately predict the effec-
tive modulus field.We also found that the high accuracy of AI
prediction can be achieved by training the model within 400
FEA data sets (Fig. S6C). Lastly, comparedwith conventional
reverse problem approaches (70–72), our AI-based forward
method enables us to overcome technical solution limitations
such as existence, uniqueness, and continuity, which are re-
quirements for solution stability (73).
Spatial distributions of cell moduli

Weapplied ourAImodel to convert theMDCKstrain data into
an effective modulus field (Figs. 4 A and S7 A). The resulting
MDCK effective modulus was 4.0 kPa 5 1.5 kPa (� 38%
fluctuation), in which its probability distribution can be
approximated by a Gaussian function (Fig. 4 B). Compared
with literature values obtained from AFM, our measured
mean effective modulus is of the same order of magnitude
(Fig. 4 B), in which the differences may be attributed to
different levels of jamming and substrates used (56–58).
The similarity between our modulus and AFM measurement
may suggest that the in-plane elastic modulus (stretching) is
comparable to the transverse elastic modulus (AFM) in
MDCK cells, implying that the cellular and organelle struc-
tural anisotropies do not necessarily lead to cell modulus
anisotropy.We also characterized the length scale of the effec-
tive modulus fluctuation by calculating the spatial autocorre-
lation function:

C
�
~d
� ¼ CðEð~xþ~dÞ�EÞðEð~xÞ�EÞD~x

Evar
(2)

Here, Eð~xÞ is the effective modulus value at position ~x,
whereas E and Evar are the mean and variance of the effective
modulus, respectively. For simplicity, we plot the radial part of
the correlation function (i.e., using the magnitude of~d as the
variable) in Fig. 4 C. As shown, we observed an exponential
decay � e� d=45:2mm, suggesting a correlation length of
45.2 mm which is approximately the length of three cells.
Our measurement is consistent with the intercellular modulus
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correlation determined using AFM, confirming the sponta-
neous modulus correlation in jammed epithelial monolayers
(56).

To demonstrate that our approach is compatible with
other adherent cell types, we implemented the same experi-
mental approach to characterize 3T3 fibroblast cell layers
(Figs. 4 D and S7 B). Consistent with previous studies
(56–58,74–77), we found that 3T3 cells exhibited a higher
mean effective modulus (12.2 kPa) compared with MDCK
cells (4.0 kPa) (Fig. 4 E). Moreover, we observed that the
3T3 culture shows a greater effective modulus fluctuation
than that of MDCK (Fig. 4 F). The large effective modulus
fluctuation may be related to the differences in underlying
cytoskeletal activity observed in 3T3 cells (78).We also found
the correlation length of 3T3 cell effectivemodulus is approx-
imately half that of MDCK cell effective modulus (Fig. 4 G).
As suggested by previous studies, the relatively long correla-
tion length of MDCK effective modulus might be associated
with their intercellular adhesions (56). We acknowledge that
unlikeMDCKmonolayers, there are no intercellular junctions
present in 3T3 monolayers, so the lack of such junctions may
not be captured in the continuity assumption imposed in our
FEAsimulations.Nevertheless, the spacebetweencell bound-
aries only occupied roughly 5%of the analyzable field of view
(Figs. S7 A and B), suggesting that a majority of the heteroge-
neity observed is within the cell and can therefore be inter-
preted as cellular mechanical heterogeneity.

Since our effective modulus measurement is microscopy
based, we can additionally evaluate the morphological
phenotype of cells under tensile strain. This capability
enabled us to investigate the relationship between effective
modulus and morphology in MDCK cells. We analyzed and
plotted cell moduli as a function of four morphological fea-
tures: cell area (Fig. 4 H and S8 A), aspect ratio (Figs. S8 B
and C), circularity (Figs. S8 D and E), and shape index
(Figs. S8 F and G). Overall, the distribution of raw data
did not show a visually obvious correlation between cell
effective modulus and area. The difficulty to visualize
such a correlation is associated with the relatively narrow
distribution of cell size, in which most data points are be-
tween the area of 200 and 400 mm2. To balance the contri-
butions from the data points outside this range, we
resampled the data so cells across the range of area are
randomly selected with equal probability. Specifically, we
resampled the data so that there was an equal number of
cells in bins of 50 mm2. The resampled data set then revealed
a mild effective modulus-area correlation that was previ-
ously masked (Fig. S8 A). Using the same data sampling
approach, we also analyzed the cell aspect ratio, circularity,
and shape index, in which we did not observe a strong cor-
relation with cell effective modulus (Fig. 4 I).

Our modulus-area result suggests that the cell modulus
may play a role in determining the size of large cells.
This finding is consistent with previous studies (57). Biolog-
ical stochasticity (e.g., gene expression fluctuation and



FIGURE 4 Effective modulus fields in MDCK and 3T3 cell monolayers

(A) Effective modulus heatmap of an MDCKmonolayer predicted by AI inference. (B) Histogram of (A) showing the AI-predicted MDCK effective modulus

in comparison to literature values. The cyan, gray, and pink lines denote the mean moduli reported in (56,72,73), respectively, with the SD illustrated by the

shaded area. (C) Correlation function of the measured MDCK effective modulus field exhibits an exponential decay � e� d=45:2 (dashed magenta line). (D)

Effective modulus heatmap of a 3T3 cell layer predicted by the AI inference. (E) Mean moduli for MDCK and 3T3 cells determined using the force mea-

surement. The 3T3 cells are approximately four times stiffer than MDCK cells. (F) 3T3 cells exhibit a greater effective modulus fluctuation (SD� 27%) than

that of MDCK cells (SD �7%). (G) MDCK cells exhibited an effective modulus distribution that is more spatially correlated (correlation length � 40 mm)

than that of 3T3 cells (correlation length �20 mm). (H) Effective modulus and area measurements for individual cells (n ¼ 286). Blue points denote a re-

sampled data set (n¼ 36) that has an even probability distribution across area values. The fit for resampled data (red line) shows a correlation between effec-

tive cell modulus and area. (I) Pearson correlation between morphological features and effective modulus values. We observed weak correlation between

effective cell modulus, area, and aspect ratio. Scale bar for (A) and (D) represents 200 mm.

Cell Layer Mechanical Heterogeneities
asymmetric cell division) and local geometric constraints
have been identified to largely influence cell morphology
in jammed epithelia. For example, cells that assemble
more stress fibers and spread out more have been shown
to be stiffer (79–81). Additionally, the local force balance
in jammed systems is often achieved by compressing the
softer constituents and reducing their size. Alternatively, it
is also possible for the converse of this hypothesis to be
true, so cell morphology instead may play a role in regu-
lating cell modulus, although further studies such as micro-
patterning experiments or inhibition of specific signaling
pathways are required to validate these hypotheses.
DISCUSSION AND CONCLUSIONS

We reported a microscopy-based cell mechanics character-
ization platform that allows visualization of supracellular
modulus heterogeneities. Our method measures the hetero-
geneous strain fields in a stretched cell-PDMS bilayer and
converts them into an effective modulus field using an AI-
based inference. Using this approach, we measured the
effective modulus distribution in MDCK (4.0 5 1.5 kPa)
and 3T3 (12.2 5 3.1 kPa) cell layers. Our measured effec-
tive mean modulus values, SD, and correlation lengths are in
agreement with previous studies (57,58,78). Furthermore,
Biophysical Journal 121, 3358–3369, September 20, 2022 3365
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we observed a mild correlation (Pearson correlation coeffi-
cient �0.24) between MDCK cell modulus and area,
implying that the cellular stiffness may affect the size and
packing of jammed epithelial cells. Collectively, our re-
ported experimental platform and results can provide useful
cell mechanics information for improving theoretical
models of epithelial jamming (56), collective migration
(82), and homeostasis (83), all of which can be influenced
by cell stiffness heterogeneity (1).

In our method, we applied a 5% tensile strain to reveal
the cell modulus heterogeneity. Although such a strain
can potentially induce changes in cell behavior, cell
stretching experiments are considered relatively non-
perturbative (84–86) compared with contact-based cell me-
chanics measurements (87). In future studies, we aim to
reduce the applied strain by improving the imaging resolu-
tion and PIV accuracy. In addition, because our stretching
experiment operates on the time scale of seconds, we
consider the cell layer viscoelasticity, which typically
emerges on the time scales of minutes to hours
(11,41,42,65–67,88,89), relatively negligible. Furthermore,
the timescale of seconds prevents the cell-substrate contacts
from rearranging as this typically occurs on the timescale of
minutes, and thus ensures the imposed nonslip boundary
condition. Overall, our relatively short timescale of stretch-
ing primarily probes the elastic response of cell monolayers,
which was captured by our FE model. A limitation of our
current inference model is that any experimental strain mea-
surement error would lead to AI prediction error, since the
FEA strain fields used for training the inference model do
not contain any noise. In the future, it would be useful to
implement other AI training frameworks including data
augmentation and neural network perturbations to improve
the robustness of the inference model (90–94).

Similar to other stretching experiments, our method re-
quires growing cells on soft substrates, which can poten-
tially alter cell properties (13,80,95). For example, it has
been shown that cells exhibit a lower modulus when
cultured on a soft substrate (10,96). Although our previous
work has shown that jammed epithelial cells with well-es-
tablished intercellular adhesions are not strongly influenced
by substrate stiffness (97), it would be useful to conduct
further cell mechanics measurements in future experiments.
We also acknowledge that the PDMS substrate uniformity
plays an important role in our measurement. Although it
would be ideal to characterize the substrate uniformity of
the specific substrate used in experiments, doing so proved
to be technically challenging since introducing detectable
particles to our substrate for PIV to track significantly
altered the local mechanical properties of such a thin, soft
substrate. Nevertheless, previous work has demonstrated
the mechanical homogeneity of similar elastomeric sub-
strates also used in stretching experiments by calculating
the strain resulting from the applied deformation using trac-
tion force microscopy (47). The results of such an experi-
3366 Biophysical Journal 121, 3358–3369, September 20, 2022
ment demonstrate a uniform strain distribution under 10%
strain. In addition, other past works have shown that
PDMS produces equiaxial and uniform strain fields under
stretching (43,44), and that both stretched and unstretched
PDMS substrate homogeneity has been validated by
measuring the modulus of three distinct spatial locations
on the substrate, in which all were in statistical agreement
with one another (98).

Our effective modulus measurement approach is a useful
alternative tool for conducting supracellular-level me-
chanics studies that require simultaneous access to micro-
scopy. For example, our system can be used for
investigating the relationship between cell signaling, gene
expression, and mechanics in developing or injured tissues.
Moreover, our stretcher is compatible with microscope on-
stage incubators, enabling the characterization of the effec-
tive modulus field evolution in cell monolayers that undergo
phenotypic changes. Such measurements could be utilized
to identify mechanical signatures in the development of
fibrotic diseases and solid tumors (1).
SUPPORTING MATERIAL

Supporting material can be found online at https://doi.org/10.1016/j.bpj.

2022.08.024.
AUTHOR CONTRIBUTIONS

A.B., Z.G., and N.Y.C.L designed the study. A.B., Z.G., and E.S. performed

experiments. B.Z., L.M., and M.KJ. developed the FEA models and gener-

ated the numerical data. X.L. and C.H. developed and trained the AI

models. A.B., Z.G., E.S., and N.Y.C.L analyzed the experimental data.

A.B., Z.G., E.S., and N.Y.C.L wrote the manuscript.
ACKNOWLEDGMENTS

We thank Dorian Luccioni for his assistance with the force measurement

development and Lihua Jin for granting us access to essential lab equip-

ment. We also thank Amy Rowat for insightful discussions. This work

was funded by the UCLA SPORE in Prostate Cancer Grant (P50

CA092131) and NIH IMSD GM055052. A.B. and N.Y.C.L are grateful

for support from NSF CMMI-2029454. L.M. and M.KJ. acknowledge

financial support from the National Science Foundation (NSF) under award

number CMMI-2053971. M.KJ. is grateful for support from NSF (IIS-

1925360, CAREER-2047663, CMMI-2101751).
DECLARATION OF INTERESTS

The authors declare no competing interests.
REFERENCES

1. Handorf, A. M., Y. Zhou, ., W.-J. Li. 2015. Tissue stiffness dictates
development, homeostasis, and disease progression. Organogenesis.
11:1–15.

2. Stooke-Vaughan, G. A., and O. Campàs. 2018. Physical control of tis-
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